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Abstract: Human Activity Recognition (HAR) involves classifying human movements and has become essential 

for assessing the frequency and length of different human acts. The development of intelligent assistive devices 

and the examination of manual operations both depend on this. HAR has recently made use of deep neural 

networks, especially when it comes to day-to-day tasks, utilizing multichannel time-series obtained from body-

worn devices equipped with various sensors. To begin, the WISDM and MHEALTH datasets are utilized as input, 

and a Generative Adversarial Network (GAN) is employed to learn a generative model that produces time-series 

data exhibiting similar space and time dependencies as real data. Subsequently, an Optimized Long Short-Term 

Memory Neural Network with Improved Aquila Optimizer (IAO-ILSTM-NN) is applied to perform HAR. The 

random parameters impact on prediction accuracy is addressed by optimizing the ILSTM-NN structure parameters 

using the IAO. Based on the simulation outcomes, the recommended framework executes superior than alternative 

frameworks that use the same datasets and baseline models. This underscores the effectiveness of the model in 

enhancing human activity recognition, particularly on multimodal sensing devices. 

 

Keywords: Generative Adversarial Network (GAN), (DA) Data Augmentation, Human Activity Recognition 

(HAR), Long Short-Term Memory Neural Network (LSTM-NN), Improved Aquila Optimizer (IAO) and 

Wearable devices. 

 

1. Introduction 

 

Identifying certain human behaviors and motions and then responding appropriately is named as Human Activity 

Recognition (HAR). To begin, sensors that can record gestures, movements, and other characteristics 

corresponding with human movement are used [1]. Following the translation of these motion signals into HAR 

code using the data gathered, computers can comprehend and carry out the associated orders. Internet of Things 

(IoT), cloud computing (CC), and edge computing are examples of networked sensing skills that have made 

substantial strides in the last decade [2]. In IoT applications, wearable sensors play a crucial role in swiftly 

recording diverse body movements to facilitate HAR. Wearable inertial measurement unit (IMU) sensors, 

composed of accelerometers and gyroscopes, have undergone rapid development, simplifying the process of 

detecting and tracking human movement [3].  

This advancement has enabled the application of HAR across diverse industries, encompassing healthcare, 

biometrics, and other areas like human emotion recognition [4]. Its adaptability highlights the significance of 

HAR using wearable sensors, extending beyond exercise-related activities to encompass a variety of everyday 

activities, including eating, drinking, cleaning one's teeth, and recognizing anomalies in sleep, are categorized and 

recorded. The evolution of HAR research has progressed from traditional handcrafted feature-based methods to 

the utilization of sophisticated deep learning (DL) techniques [5]. Initially, HAR methods mostly relied on 

machine learning (ML) and manual feature extraction.  

Low-level features were captured using handcrafted feature extraction approaches such as SURF, SIFT, HOG, 

and others [6]. To overcome the limitations of activity identification, statistical learning techniques have been 

widely used [7], [8]. Jumping, running, and walking were among the seven movements that were identified in 

research by Chavarriaga et al. [9] using Naïve Bayes (NB) and K-Nearest Neighbour (KNN) classifiers. They 

were unable to find discriminative characteristics for the accurate distinction of diverse activities, however, and 

their method depended on handcrafted features. When it comes to recognizing human activity, feature extraction 

techniques like transform coding [12], statistics of raw data [11], and symbolic representation [10] are often used. 

However, these techniques are heuristic and need specialized understanding of feature design [13]. 
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Recently, the integration of DL (Deep Learning) technology into HAR applications has gained popularity. Unlike 

traditional statistical (ML) Machine Learning methods, DL offers increased ease in extracting and categorizing 

intricate data, especially when dealing with numerous sensor sources. For instance, Convolutional Neural Network 

(CNN) [14] not only automatically extracts features but also comprehensively learns complex high-dimensional 

nonlinear patterns [15]. Wearable sensor-based DL for HAR has been investigated by several researchers. 

However, much of the existing research has treated deep learning as a black box, with limited exploration into the 

underlying data. 

In a recent study [16], for HAR, a multi-channel CNN with DA was presented; it was called AMC.-CNN. The 

methodology involves constructing the feature window using sliding windows in time series, followed by 

augmenting the feature window through data transformation and addition. However, in the realm of time series 

recognition, many datasets tend to be quite small, and any methodology to resolve this limitation is through the 

use of data augmentation with Generative Adversarial Network (GAN) methods. Recognizing the importance of 

hyperparameter tuning in enhancing the accuracy and efficiency of neural networks, this research proposes the 

IAO-ILSTM-NN model for HAR. The primary contribution of this work is outlined as follows: 

• An optimized DL framework is introduced for multiple HAR, incorporating a combined LSTM-NN with IAO 

for feature extraction and leveraging temporal dependencies. 

• This model proves to be adaptable across various sensor modalities, effectively identifying multiple human 

activities regardless of the variations in body movements. 

• Through experimentation with publicly accessible datasets like WISDM and MHEALTH, when compared to 

other DL frameworks, the suggested model performs better, as evidenced by published results and 

comparisons with baseline deep learning models. 

 

This study is segmented into the sections listed as follows: An outline of the relevant DL backdrop for DAR is 

provided in Section II. Section III provides an in-depth depiction of the proposed IAO-ILSTM-NN model's 

structure. The experiment setup is outlined, and section IV goes into more detail about the findings and analysis. 

Section V provides specifics on conclusions and possible further research. 

 

2. Related Work 

 

Helmi et al. [17] created a robust HAR system using data from wearable sensors by fusing applications of swarm 

intelligence (SI) with DL. A residual CNN and a recurrent NN (RCNN-BiGRU) were used in the development of 

their lightweight feature extraction approach. Novel feature selection strategies were developed based on the 

marine predator algorithm (MPA) to get the best possible feature set. Three binary versions, MPA_S10 and 

MPA_V, were created for this purpose in addition to the standard MPA version. To guarantee the suggested MPA 

variations' high performance, thorough testing was done on them by comparing them with a range of optimization 

methods and using a variety of assessment metrics and statistical tests. When working with time-series data, 

difficulties have been faced despite the adoption of DL-based approaches in activity detection.   

 

Athota & Sumathi [18] introduced Hybrid Learning Algorithms (HLA) as a means to construct an inclusive 

classification technique for human activity recognition (HAR) utilizing data from wearable sensors. The objective 

of this study is to employ the Convolution Memory Fusion Algorithm (CMFA) and Convolution Gated Fusion 

Algorithm (CGFA). The purpose of these techniques is to allow the model to learn gated terms in sequential data, 

as well as long-term relationships and local properties. By using a range of filter sizes, different local temporal 

dependencies are captured and the improvement is applied appropriately, improving feature extraction. After 

applying the Amalgam Learning Model to the WISDM dataset, accomplishment rates for CMFA and CGFA 

implementations on smartwatches and smartphones were 96.76% and 94.98%, respectively, and 96.91% and 

84.35%, respectively. Neural networks with built-in self-attention mechanisms may be used to identify patterns 

in raw sensor data inputs. 

 

Varshney et al., [19] Initially, data from accelerometers, magnetometers, and gyroscopes placed at the body's ankle 

are jointly learned to form the foundation for the lower arm. When the accelerometer, gyroscope, and 

magnetometer data are integrated, the results are better than when the data are taken from each sensor alone or in 

other combinations. The research makes use of 2 widely accessible datasets, mHEALTH and PAMAP2. The 

suggested framework's higher performance is shown by the experimental findings, which are benchmarked against 

the most advanced techniques. For balanced and unbalanced mHEALTH datasets, the model obtains test accuracy 

values of 98.48% and 98.63%, respectively. For balanced and unbalanced PAMAP2 datasets, the model gets test 

accuracy values of 92.00% and 94.19%.  
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Khelalef et al., [20] used Body Sensor Network (BSTM) data to extract features and then categorize activities 

using a convolutional neural network (CNN). We used three publicly accessible datasets (Weizmann, Keck 

Gesture, and KTH Database) to do several experiments to evaluate the efficacy of our technique. Based on the 

experimental outcomes, the methodology overtakes contemporary DL techniques and overtakes traditional state-

of-the-art (SOTA) approaches in terms of recognition accuracy. Notably, our method is straightforward to 

implement, demands less computational power, and is applicable to multi-subject activity recognition. The 

imperative for HAR becomes apparent in the framework of constructing smart homes and intelligent healthcare 

environments, acknowledging the challenges inherent in HAR due to the complexity and heterogeneity of the 

sensors involved in its recognition.  

Hassan et al., [21] approached the challenge of human activity recognition by framing it using information from 

wearable body sensors as a classification problem. For enhancing the precision of HAR, we specifically support 

the implementation of a Deep Belief Network (DBN) model. First, using the unprocessed body sensor data, we 

extract important properties. Then, to further improve these characteristics and increase their resilience for quick 

activity identification, we use linear discriminant analysis (LDA) and kernel principal component analysis 

(KPCA). Once these processed characteristics are used, the DBN is trained. To confirm the deep learning 

algorithm's effectiveness, many tests were run on a real-world dataset derived from wearable sensors. In activity 

recognition, the findings show that the suggested DBN performs well, outperforming competing algorithms. 

Nevertheless, since human emotions are so complex and varied, it is still difficult to reliably and automatically 

identify physical human activities using wearable sensors.  

Kolkar & Geetha [22] used datasets such UCI HAR, WISDM, KTH action, and PAMAP2 to train a deep neural 

network (DNN) and evaluate the suggested system using Spider Monkey Optimization (SMO). Walking, standing, 

lying down, running, climbing stairs, and descending stairs are among the actions covered by the datasets. The 

recurrent neural network's hidden layer is where the spider monkey model's fitness function is started in this 

method to improve precision and accuracy. In comparison to other cutting-edge techniques like DL-Q, End-to-

end DNN, and SVM, experimental findings show performance increases. With a 98.92% accuracy, 98.12% 

precision, 98.9% recall, and 95.90% F1-score for the WISDM dataset, the suggested SMO-based approach is seen 

to perform better across many evaluations and tests. Comparing this execution to other SOTA methods, similar 

improvements of 2.8% in error rate are seen for different datasets. Given the challenge of collecting long-term 

interdependence and deriving effective characteristics from raw sensor data, identifying complex human 

behaviors is proving to be tough. 

Choudhury & Soni [23] presented a simplified and resource-efficient hybrid deep learning model that uses 

sophisticated feature learning algorithms and physiological electromyography (EMG) sensors to recognize 

complex human actions. Multiple 1-D convolution layers are integrated into the proposed CNN-LSTM framework 

for the extraction of spatial features. To find long-term temporal relationships, the created feature maps are then 

fed into recurrent layers. Through training and testing with an unprocessed raw EMG dataset from physiological 

sensors, the suggested framework attained 84.12% accuracy at its peak and 83% on average. Our approach avoids 

the heavy data preprocessing and feature engineering overhead common in real-time activity recognition and 

instead prioritizes performance optimization, in contrast to much of the existing work on Human Activity 

Recognition (HAR), which frequently relies on heavily augmented and pre-processed data. 

Chen et al., [24] suggested a semisupervised DL model which uses multimodal wearable sensory data to identify 

unbalanced activities. Our objective is to concurrently address limited labeled data, class-imbalance problems, 

and obstacles related to multimodal sensor data, such as interpersonal variability and interclass similarity. More 

specifically, we provide a semi-supervised framework that is pattern-balanced and capable of extracting and 

preserving a variety of latent patterns of activity. Furthermore, using our recurrent convolutional attention 

networks, we detect prominent areas suggestive of human activities by leveraging the independence of sensory 

input modalities. The results of our experiments demonstrate that, even with a mere 10% of labeled training data, 

our suggested model outperforms several cutting-edge techniques, including semi-supervised and supervised 

methods. Our method's resilience in handling tiny and unbalanced training datasets is further shown by its results. 

It's important to remember, however, that the importance of joints changes as the actions in a video go on and as 

they do differently.  

Nikpour & Armanfard [25] Introduced is a method for spatial hard attention identification designed to eliminate 

uninformative or misleading joints in each frame. The spatial-attention-aware agent is trained via deep 

reinforcement learning, and the joint selection issue is formulated as a Markov decision process. Interestingly, 

agent training doesn't need any extra labelling. The agent generates a sequence of joint probabilities as output 

after processing a series of characteristics that are taken from skeletal videos. To improve performance, this 

technique may be easily combined with other skeleton-based activity identification methods. It functions as a 
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flexible framework. The conclusions show intense competition in activity identification amongst three popular 

datasets for HAR. 

Ahmad et al., [26] recommended a technique for recognizing human activity that combines the use of a 

Bidirectional-Gated Recurrent Unit (Bi-GRU) and CNN to interpret visual input. First, we use CNN for deep 

feature extraction from frame sequences in videos of people doing things. Next, to improve performance and 

lower the model's computational complexity, we extract the most important characteristics from these deep 

representations. The second phase involves the introduction of Bi-GRU to capture the temporal dynamics of frame 

sequences. Bi-GRU learns both forward and backward temporal dynamics directions at every time step and is fed 

the deep-important characteristics that were derived from the frame sequence of human actions. Realistic films 

from datasets for human activity identification, such as YouTube11, HMDB51, and UCF101, are used in extensive 

tests. Lastly, we show the efficacy of our suggested procedure by comparing the findings with those from other 

approaches. It is important to keep in mind, nevertheless, that these current methods only record the local contents 

of human activities, that makes them appropriate for basic activity identification but less successful in situations 

when several people are engaged in different activities. 

 

Inference: Each deep learning (DL) model possesses unique learning process configurations to assimilate data 

and enhance its execution. These configurations are linked to the hyperparameters within DL frameworks, 

significantly influencing training time, computational costs, and overall model performance. The primary 

challenge lies in selecting the optimal set of hyperparameters, as each hyperparameter exerts a distinct influence 

on the DL framework. A common technique to address this challenge is the trial-and-error methodology, wherein 

hyperparameters are chosen through empirical means. However, in DL architectures, there exists a trade-off 

among hyperparameters, meaning that adjusting one may impact others. Given these considerations, manually 

searching for the optimal set of hyperparameters can be a laborious task. 

 

3. Proposed Methodology 

 

In recent times, use of multichannel time-series data has allowed deep neural networks to be used to HAR in the 

framework of everyday actions. The wearable devices that are located on the body and have various kinds of 

sensors are the sources of these time series. Initially, the WISDM and MHEALTH datasets are utilized as inputs, 

and to train a generative model that can replicate the spatial and temporal correlations seen in actual data, a 

Generative Adversarial Network (GAN) is employed. Then, for HAR, a LSTM-NN is employed. To mitigate the 

effect of random parameters on prediction accuracy, the LSTM-NN's structural parameters are optimized using 

the Improved Aquila Optimizer (IAO).  

 

Figure 1. Proposed HAR model using LSTM-NN model with IAO 

 

Input dataset Description: In this section, we present a novel LSTM-NN model enhanced by the Improved 

Aquila Optimizer (IAO) for the classification of Human Activity Recognition (HAR). This approach centers 

around the LSTM-NN model, which contains crucial hyperparameters significantly influencing its performance. 

Dataset augmentation 

using GAN 

HAR using LSTM-NN 

model with IAO 

Performance 

comparison 
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The IAO method is employed to optimize these hyperparameters, ensuring highly accurate predictions for various 

HAR activities across two datasets, namely WISDM and MHealth.  

The WISDM dataset [34] includes sensor data from accelerometers in phones. The dataset, which is comprised of 

1,098,209 records that capture 3-axis accelerometer sensor readings, was gathered via an application that was 

loaded on each user's phone. These readings originate from 29 users who carried a smartphone positioned in their 

front pants' pocket. Notably, the age, gender, and physical/behavioral features of the users are not included in the 

dataset. A rate of 20 Hz per second was used to sample the data. Figure 5 depicts the class distribution, with 

jogging and walking being the most prevalent activities. 

 

The MHealth dataset [2] comprises sensor information obtained from ten individuals participating in twelve 

different activities. An electrocardiogram sensor, a 3-axis magnetometer, a 3-axis gyroscope, and a 3-axis 

accelerometer are the three devices from which the data is derived. These sensors are positioned at various body 

locations, including the chest, hand, and ankle. Similar to the WISDM dataset, the MHealth dataset lacks 

individual data of the users. There are 1,215,745 occurrences in all, and the distribution of classes across the 

different activities is well-balanced. Notably, the activity with the least amount of data is "Jump front & Back". 

 
Fig. 2. Distribution of the Classes for each dataset [27]. 

 

Construction of Feature Window  

This research utilized the WISDM and MHEALTH datasets, focusing primarily on HAR for wearable devices. 

An accelerometer, gyroscope, magnetometer, or heart rate meter is one of the time-series data sources that 

primarily provide HAR data. Collecting human activity features from time-series data using sliding windows is 

the process of creating a feature window. The generated feature window should capture the properties unique to a 

given activity as time series features may cover a variety of human activities. As a result, the feature data in the 

time series is labeled before the feature window is constructed. This makes it possible for the sliding window to 

move within the independent time series segment in response to a certain coverage ratio. Sensor data are non-

image data; examples of these are magnetometers, accelerometers, gyroscopes, and heart rate monitors, possessing 

a relatively simple structure typically with a few dimensions. An accelerometer, for example, provides data in the 

format (x, y, z), which is a sequence of three-dimensional coordinates at various places. Figure 3 shows the steps 

involved in building the feature window. 

 

 
Fig.3. Sliding window-based feature construction [16] 

 

Given a sampling rate of "f," "w" in the time series of acquired data indicates the amount of data points gathered 

in "t" seconds, and "h" indicates the cumulative dimensions of information obtained by every sensor. A certain 

coverage ratio determines how the window glides. To preserve the feature window's independence, a new sliding 
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window opens when a new sequence action begins. The basic mapping relationship between features and activity 

categorization is established by the creation of a feature window. Here is a summary of the matching formula: 

 

𝑤 =  𝑓 ×  𝓉         (1)  

𝒽 = ∑ dim(𝑆𝑖)
𝑛
𝑖=1           (2)  

𝑚𝑎𝑡ℎ𝑏 𝑓𝑤 = [

𝑆11 𝑆21 ⋯ 𝑆𝑤1

𝑆12 𝑆22 ⋯ 𝑆𝑤1

⋯ ⋯ ⋱ ⋯
𝑆1ℎ  𝑆2ℎ  ⋯ 𝑆𝑤ℎ

]                (3) 

 

In the given expression, the data dimension of the ith sensor can be denoted as dim (𝑆𝑖), the feature window can 

be represented as 𝑓𝑤, and 𝑆𝑤ℎ corresponds to the data of dimension h sampled at the wth time within the 𝑓𝑤.  

 

Data Augmentation for Feature Window  

In Computer Vision (CV), DA aims to incorporate prior knowledge for optimizing model performance through 

straightforward and efficient solutions. By employing data augmentation, the network model learns specific data 

transformation methods, enhancing its overall performance [16]. Meaningful data alterations or additions may be 

made to the feature window that is retrieved from wearable devices and represents multidimensional user activity 

characteristics from numerous sensors across time. Because of these changes, the original feature window's 

distribution space is widened and activity characteristics are highlighted. Consequently, the model can gather more 

feature information with ease. Thus, enhancing the model's capacity for generalization and maintaining a strong 

correlation are guaranteed when data augmentation is applied to the feature window.  

Within a predetermined window, the feature window collects sensor sample data, capturing distinct characteristics 

of human activity. For instance, distinguishing jogging from walking reveals more pronounced changes in data 

from the x, y, and z axes. Furthermore, it also reveals key differences when a detailed examination of the x-axis, 

y-axis, and z-axis is done. Metrics like average value, standard deviation, and feature dimension comparisons are 

used to improve the feature window's representation capacity. A simplified technique for enhancing data is 

described in this paper, and the enhanced feature window may be computed using the following formula: 

 

𝑎𝑣𝑔𝑖 = ∑ 𝑆𝑘𝑖/𝑤,𝑤
𝑘=1 1 <= 𝑖 <= ℎ        (4)  

𝑠𝓉𝑑𝑖 = √
∑ ((𝑆𝑘𝑖−𝑎𝑣𝑔𝑖)

2)𝑤
𝑘=1

  𝑤
, 1 <= 𝑖 <= ℎ        (5) 

 

The variables 𝑎𝑣𝑔𝑖  and 𝑠𝓉𝑑𝑖  in the provided equations stand for the average value and standard deviation of the 

ith row, respectively, in the 𝑓𝑤. Throughout the given time, 𝑎𝑣𝑔𝑖 represents the mean value of the sensor feature 

dimension, and 𝑠𝓉𝑑𝑖 denotes the degree of variance in that dimension. The average deviation among feature 

dimensions’ x and y for a particular sensor is stated in Eq. 6, assuming the 𝑓𝑤 has 3 feature dimensions, x, y, and 

z. Similar calculations may be made for 𝑑𝑒𝑙𝓉𝑎𝑥𝑧  and 𝑑𝑒𝑙𝓉𝑎𝑦𝑧 for the same sensor. By using equations 4, 5, and 

6, equation 7 defines the enhanced portion of the 𝑓𝑤. Interestingly, the feature dimension sizes of each sensor 

may vary; for this reason, the default value of the feature dimension's average deviation in Eq. 7 is 0. The 

augmented 𝑓𝑤 is generated by transposing 𝑓𝑤 to represent 𝑓𝑤𝑇 , as described in Eq. 8, through addition of the 

DA to the original 𝑓𝑤. Vertical connections between the transposed 𝑓𝑤 and transposed augmented data are 

essentially what create the augmented feature window 𝑎𝑓𝑤. 

 

𝑑𝑒𝑙𝓉𝑎𝑥𝑦 =
∑ |𝑥𝑖 − 𝑦𝑖 |𝑤

 𝑖=1

 𝑤
         (6)  

agt =

[
 
 
 
𝑎𝑣𝑔1 𝑠𝓉𝑑1 𝑑𝑒𝑙𝓉𝑎𝑥𝑦

𝑎𝑣𝑔2 𝑠𝓉𝑑2 𝑑𝑒𝑙𝓉𝑎𝑥𝑦

⋯ ⋯ ⋯
𝑎𝑣𝑔ℎ 𝑠𝓉𝑑ℎ 𝑑𝑒𝑙𝓉𝑎𝑦𝑧]

 
 
 
              (7) 

𝑎𝑓𝑤 = [
𝑓𝑤𝑇

𝑎𝑔𝓉𝑇]                          (8)  

 

Improved data sample quality for HAR, reduced redundancy in the dataset, and increased model capacity to learn 

more varied human activity aspects are the objectives of this study. The research suggests connecting many 

augmented feature windows that correspond to the same activity horizontally to accomplish this. A reconstructed 

feature sample is produced when three enhanced feature windows are connected horizontally [16]. 
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Human Activity Recognition Using IAO-ILSTM-NN 

In this section, the proposed IAO-based ILSTM-NN is used for performing human activity classification and 

prediction using features obtained from data augmentation phase.  

 

Improved Long Short-Term Memory (LSTM) Neural Network: An improvement over RNN is LSTM [28], 

which adds more interactions per module (or cell) to get over some of the drawbacks of RNN. Long-term 

dependencies may be understood by LSTMs, a particular kind of RNN, which can also remember information for 

a long time. The LSTM model [29] has a chain structure in its architectural design. The repeating module, 

however, has a unique setup. It contains 4 interacting layers using a different communication mechanism as 

opposed to a single neural network as in a typical RNN. Figure 4 shows how the LSTM neural network is 

organized. 

 

Fig.4. Structure of LSTM model 

 

Two states the cell state and the hidden state are transferred from one memory block, or cell, to the next in an 

ordinary LSTM network. Data may flow forward with little changes, while certain linear transformations could 

take place, as the cell state is the main conduit for data flow. A series of matrix operations with unique individual 

weights, or a layer, is how sigmoid gates control the addition or removal of data from the cell state. LSTMs are 

engineered to tackle long-term dependency issues by utilizing gates to control the memorization process. 

Constructing an LSTM network begins by identifying unnecessary information to be excluded from the cell at 

that step. The output of the previous LSTM unit (𝒽𝓉−1) at time t-1 and the current input 𝒳𝓉  at time t are taken 

into account by the sigmoid function, which controls this selection process. The forget gate, also known as 𝑓𝓉, is 

the gate that the sigmoid function uses to identify the part of the previous output that should be deleted. Each 

element in the cell state, 𝐶𝓉−1 is represented by a vector called 𝑓𝓉, whose values range from 0 to 1. 
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𝑓𝓉 = 𝜎(𝒲𝑓[𝒽𝓉−1, 𝒳𝓉 ] + 𝒷𝒾𝒶𝓈𝑓)        (9) 

In this context, 𝜎 represents the sigmoid function, while 𝒲𝑓 and 𝒷𝒾𝒶𝓈𝑓 denote the bias and weight matrices 

connected to the forget gate, respectively. The next step is to determine and update the cell state by adding the 

data from the incoming input (𝑋𝓉). This process consists of two components: the first being the sigmoid layer, 

which evaluates the new information can be retained or disregarded (assigned values of 0 or 1), and the second 

being the tan𝒽 layer. By allocating weights to the given numbers, the tan𝒽 function establishes their significance 

level between -1 and 1. This updated memory is then combined with the current memory 𝐶𝓉−1 to create the updated 

memory 𝐶𝓉. The cell state is modified by the product of these two values. 

 

 𝑖𝓉 = 𝜎(𝒲𝑖  [𝒽𝓉−1, 𝑋𝓉] + 𝒷𝒾𝒶𝓈𝑖),        (10)  

𝑁𝓉 = tan𝒽 (𝒲𝑛 [𝒽𝓉−1, 𝑋𝓉]  + 𝒷𝒾𝒶𝓈𝑛),       (11) 

 𝐶𝓉 = 𝐶𝓉−1𝑓𝓉 + 𝑁𝓉 𝑖𝓉 .         (12)  

 

W and bias indicate the weight matrices and bias connected to the cell state, respectively, in this context, whereas 

𝐶𝓉−1 and 𝐶𝓉 stand for the cell states at times t-1 and t. The output values (𝒽𝓉) are eventually generated in a refined 

form from the output cell state (𝑂𝓉). First, the components of the cell state that contribute to the output are 

identified via a sigmoid layer. The freshly produced values from the tanh layer applied to the cell state (𝐶𝓉) are 

then increased by the output of the sigmoid gate (𝑂𝓉), where these values fall within the range of -1 to 1. 

 

 𝑂𝓉 = 𝜎(𝒲𝑜[𝒽𝓉−1, 𝑋𝓉] + 𝒷𝒾𝒶𝓈𝑜),        (13)  

𝒽𝓉 = 𝑂𝓉 tan 𝒽(𝐶𝓉).         (14) 

 

In this instance, the output gate's weight matrices and bias are denoted by 𝒲𝑜 and 𝒷𝒾𝒶𝓈𝑜 , respectively. To reduce 

prediction oscillation, cell propagation incorporates a hyperbolic tangent activation function that keeps values 

between (-1, 1). With this alteration, oscillations are no longer visible, and the cell divergence phenomena seen in 

the normal model are largely eliminated. Furthermore, the hyperbolic tangent formula is recognized as the 

hyperbolic function and is defined as follows: 

 

tan𝒽(𝒳𝓉) =
sin 𝒽(𝒳𝓉)

cos𝒽(𝒳𝓉)
        (15) 

 

In order to diminish inherent simplicity and accommodate the growing volume of information, the LSTM's cell 

state dimension was decoupled from the input size, enabling the flexibility to expand state sizes and retain 

additional temporal information. To establish this independence in cell dimensions, the output gating was followed 

by the introduction of a single-layer NN with a Rectified Linear Unit (ReLU) activation function. The utilization 

of this activation function effectively removed negative outputs, as illustrated in Figure 5. 

 

 
Fig.4.Structure of Improved LSTM model 

 

𝑥𝑡 

𝑥𝑡+1
𝑙  

𝜎𝑓 𝜎𝑖 tan 𝒽 𝜎𝑜 

ReLU 

ℎ𝑡 𝑜𝑡 

𝑐𝑡 

ℎ𝑡−1 

𝑐𝑡−1 

𝑓𝑡 𝑖𝑡 𝑐𝑡 

tan 𝒽 

https://museonaturalistico.it/


NATURALISTA CAMPANO 

ISSN: 1827-7160 

Volume 28 Issue 1, 2024 

  
 

https://museonaturalistico.it                                                                                                                                              2926 

In order to diminish the simplistic nature and accommodate the growing influx of information, the input size had 

no effect on the LSTM's cell state dimension. This independence facilitated the expansion of state sizes, enabling 

the retention of more temporal information. These adjustments markedly enhanced prediction accuracy, leading 

to the adoption of this structure as a foundational model, labeled ILSTM. Effective training on continuous data 

was hampered by the hyperbolic tangent's inclusion, which brought up the vanishing gradient issue once again. 

Discrete blocks of feature data were used for model training in a hybrid backpropagation technique to modify the 

issue. Simultaneously, without requiring a lengthy backpropagation, some long-term trend learning was made 

possible by the initialization of the cell and concealed states from the previous iteration. 

 

Hyperparameters Tuning Using IAO Algorithm: In this study, the IAO algorithm is employed for tuning 

hyperparameters in the ILSTM-NN. The AO parameters and hyperparameters of the LSTM network, depending 

on the findings shown in Fig. 5, variables like the batch size, time step, and amount of hidden layers are initialized. 

The introduction of IAO, inspired by modifications to the SCF from IAO in a prior study [30], led to further 

adjustments to the AO. Nevertheless, it was discovered that the SCF convergence features slowed down the 

precision of epochs in IAO, which could make it more difficult to get the best result. A revised search control 

factor (RSCF) that was specially designed for the second and third search procedures was included in a modified 

version of IAO that was released in response to these difficulties. The next section presents a thorough synopsis 

of the IAO methodology, emphasizing certain adjustments and how they affect the optimization process. Aquila's 

mobility in terms of epochs is minimized by using the ISCF to control the search range. As such, the search space 

is far less than with the prior SCF, and the best solution is found considerably faster than with the previous method. 

The following is how the updated RSCF is displayed:  

 

𝑅𝑆𝐶𝐹(𝑡) =  2 × exp (1 − (
𝑡 × (𝑡 × 0.1)

max𝑇
) ) ×  𝑑𝑐𝑓                                  (16)  

𝑑𝑐𝑓 = {
1  𝑖 𝑓 𝑟𝑖 <  0.5,

−1  𝑒𝑙𝑠𝑒.
                                      (17) 

 

Here, the variable t signifies the current iteration, and T represents the maximum iteration. A random number 

between 0 and 1 is represented by the parameter 𝑟𝑖, while the direction control factor is indicated by the symbol 

𝑑𝑐𝑓. The direction in which the Aquila fly is determined in large part by these variables. By restricting the Aquila's 

movement, the RSCF function lowers optimization latency and achieves fast convergence. Compared to the 

original AO, the improved method finds the optimum solution set in less time. A total of 250 epochs were used to 

run both optimization strategies. The approach that is being provided incorporates four unique phases of search, 

which are further discussed below. This is made possible by the inclusion of the RSCF function.  

Step 1: Vertical Dive Attack (𝑆1): The Aquila starts its hunting operation by using a high-altitude swoop to locate 

the target area and choose the optimal hunting location. The following is a description of these moves, sometimes 

referred to as vertical dive attacks:  

 

𝑆1(𝑡 +  1) =  𝑆𝑏𝑒𝑠𝑡(𝑡) × (1 −
𝑡

𝑇
) + (𝑆𝑀(𝑡) − 𝑆𝑏𝑒𝑠𝑡(𝑡) × 𝑟)       (18) 

In Equation (18), 𝑆1(𝑡 +  1) represents the candidate solution for (𝑡 +  1) epochs, where 𝑆𝑏𝑒𝑠𝑡(𝑡) is the best 

answer found up to the ith generation, and " 𝑟" stands for a random number within the range [0, 1]. To control the 

search area, the word (1 −
𝑡

𝑇
) is used. The mean value of the present solution up to the ith epoch is also shown by 

𝑆(𝑡).  

Step 2: Updated Comprehensive Search with a Brief Glide Strike (RS): The Aquila thoroughly investigates the 

solution space at a variety of angles and speeds before attacking its target, conducting a thorough search 

characterized by shorter glide attacks, as illustrated below: 

 

 𝑅𝑆2(𝑡 +  1)  = 𝑆𝑅(𝑡)  + 𝑅𝑆𝐶𝐹(𝑡) × (𝑆𝑏𝑒𝑠𝑡(𝑡)  −  𝑆(𝑡))  ×  𝑟 ×  (𝑦 −  𝑥)   (19)  

 

In Equation (19), the locations or coordinates of the points that formed the spiral shape throughout the search 

phase are represented by the variables 𝑥 and 𝑦. The search control factor is denoted by 𝑅𝑆𝐶𝐹(𝑡), and the word r 

denotes a random integer in the range [0, 1]. To deal with the problem of becoming stuck in a locally optimum 

solution, we used 𝑅𝑆𝐶𝐹 in place of the Levy flight (LF) distribution. 

Step 3: Modified Search Around Prey and Attack (MS): After the 𝑀𝑆2 search stage, the prey's position is 

pinpointed exactly. The search around prey and attack is the term for the Aquila's thorough reconnaissance of the 

area around the target. It uses simulated assaults to ascertain the prey's reaction.  
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𝑅𝑆3(𝑖, 𝑗) = 𝑙𝑏𝑗 + 𝑟 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗) + 𝑟(𝑆𝑅(𝑗) − 𝑆𝑏𝑒𝑠𝑡(𝑗)) × 𝑅𝑆𝐶𝐹(𝑡) × (1 −
𝑡

𝑇
)      (20) 

The random collection of solutions is represented by 𝑆𝑅(𝑗) in Equation (20), while the current solution for t epochs 

is indicated by 𝑀𝑆3(𝑖, 𝑗).  

Step 4: Walk and Grab Attack (S): Atlast, using the motions of the prey as a guide in the fourth search approach, 

the Aquila launches an assault from an elevated posture. The term "Walk and Grab Prey" describes this kind of 

search approach,  

 

𝑆4(𝑡 +  1) =  𝑄𝐹  ×  𝑆𝑏𝑒𝑠𝑡(𝑡)  − (𝐺1 ×  𝑆(𝑡)  ×  𝑟𝑖)  − 𝐺2 × 𝑙𝑒𝑣(𝐷),    (21)  

𝑄𝐹 = 𝑡
2×𝑟−1

(1−𝑇)2   ,          (22)  

𝐺1 = 2 × 𝑟𝑖 − 1,         (23)  

𝐺2  = 2 × (1 −
 𝑡 

𝑇
) .        (24) 

 

In this context, 𝑆4(𝑡 +  1) signifies the current solution achieved, and 𝑙𝑒𝑣(𝐷) represents the distribution of Levy 

across the D-dimensional space. The quality function (QF) in the search process helps maintain balance. 𝐺1 

encompasses the various movements of the Aquila during the hunt, while 𝐺2 denotes the gradient of the hunting 

process. The selection of fitness is a pivotal aspect of the IAO method, wherein the encoder performance is utilized 

as a measure for a superior solution candidate. The performance value is now the primary criterion employed to 

construct 𝐹𝑖𝑡𝑛𝑒𝑠𝑠.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑚𝑎𝑥(𝑃)         (25)  

𝑃 =
 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
           (26) 

 where the true and false positive values are denoted by 𝑇𝑃 and 𝐹𝑃.  

  

 

Fig.5. Flowchart of IAO based hyperparameter tuning of ILSTM-NN 
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performed a comparison examination of the framework's recognition execution with and without augmentation to 

evaluate the efficacy of this strategy, using the WISDM and MHEALTH datasets. The proposed IAO-ILSTM-NN 

was compared against existing methods, including AMC-CNN [16], HLA [18], and SMO-DNN [22]. The 

experimental setup utilized a Windows 10 Professional 64-bit OS (Operating System), an Intel i9-9900k CPU, 

32GB RAM, NVIDIA RTX 2080Ti GPU, and the PyTorch DL structure. Additionally, the evaluation metrics 

involved true negative value (TN) for accurately predicting the negative class, while false negative value (FN) 

and false positive (FP) represented misclassified samples. Using these parameters, the equations for accuracy, 

precision, F1-score, Mathew Correlation-coefficient (MCC), specificity, and sensitivity are expressed as follows: 

The classification model's accuracy indicates its overall performance and can be computed using the provided 

formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∗ 100       (27) 

 

AUC (Area under the ROC Curve). All possible categorization thresholds, AUC provides a thorough evaluation 

of performance. The chance that the model gives preference to a randomly selected positive example over a 

randomly selected negative example is one way to evaluate AUC calculations. 

𝐴𝑈𝐶 =
𝑅𝑒𝑐𝑎𝑙𝑙+𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝓉𝑦

2
∗ 100       (28) 

The F1-score serves as a weighted metric, considering both recall precision and sensitivity. Its scale spans from 0 

to 1, with a value of 1 representing excellent performance by the classification algorithm, and a value of 0 

signifying poor performance. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (29) 

MCC, or Matthew Correlation Coefficient, is a correlation coefficient that assesses how well the expected and 

actual results correlate. The resulting MCC values fall within the range of -1 to +1. An MCC of -1 indicates a 

completely incorrect prediction by the classifier, 0 suggests a classifier making random predictions, and +1 

signifies an ideal prediction by the classification models. The formula for computing MCC values is provided 

below: 

𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
      (30) 

Specificity is described as the proportion of the total amount of persons to the ones who were accurately 

categorized as inactive. This suggests projecting a bad scenario while the subject is, in fact, passive. The following 

formula may be used to calculate specificity: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝓉𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
∗ 100       (31) 

The ratio of newly identified activities to all heart disease cases is known as sensitivity. This indicates that the 

model predicts a positive outcome when the person is indeed active. The formula for computing sensitivity is 

provided below: 

𝑆𝑒𝑛𝑠𝑖𝓉𝑖𝑣𝑖𝓉𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100       (32) 

 

 
Fig.6. Comparison of the distribution of Accuracy validation values. 
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The suggested IAO-ILSTM-NN strategy was compared to three other machine-learning techniques to assess its 

efficacy: HLA, SMO-DNN, and AMC-CNN, along with their respective strategies. Figure 6 illustrates the 

corresponding accuracy distributions for these four approaches. Considering the average accuracy values, it is 

evident that IAO-ILSTM-NN surpasses the performance of the other approaches. Notably, the highest accuracy 

values for the proposed method were achieved through the TL-based strategy. Specifically, IAO-ILSTM-NN 

achieves an accuracy of 91.5% (WISDOM) and 94.5% (MHealth) compared to all other models. Results for 

Human Activity Recognition (HAR) might be improved by the higher quality produced by the suggested IAO-

ILSTM-NN. In contrast, existing methods such as HLA, SMO-DNN, and AMC-CNN yield lower accuracy values. 

Consequently, the proposed algorithm demonstrates superiority over existing algorithms in terms of achieving 

robust validation results for activity prediction.  

  

 
Fig.7. The distribution of AUC validation values 

 

The proposed IAO-ILSTM-NN approach's distribution of 50 validation AUC values is contrasted with each of the 

three machine learning methodologies' distribution of 50 validation AUC values in Figure. 7 (SMO-DNN, HLA, 

and AMC-CNN). Notably, the TL-based technique produced the best results for the proposed method. Given the 

excellent quality derived from the IAO-ILSTM-NN, it has the potential to enhance disease identification. The 

IAO-ILSTM-NN achieves AUC values of 88% (WISDOM), 89% (MHealth), and 91.4% (Leukemia) in 

comparison to all other models. Results from established approaches include SMO-DNN (74.15% for WISDOM 

cancer, 73.15% for MHealth cancer, and 75.15% for leukemia), HLA (74.21% for WISDOM cancer, 72.2% for 

MHealth cancer, and 76.21% for leukemia), and AMC-CNN (81% for WISDOM cancer, 81% for MHealth cancer, 

and 82% for leukemia). Consequently, in terms of reliable validation results, the suggested approach outperforms 

current cancer prediction algorithms. Existing approaches fall short in providing accurate detection results in the 

presence of denoised features. The suggested method outperforms the other three in overcoming the impact of 

pre-processing features and accurately classifying Human Activity Recognition (HAR).  

 

 
Fig.8. The distribution of F-Measure validation values 
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Figure 8 illustrates that the IAO-ILSTM-NN surpasses other approaches, including HLA, SMO-DNN, and AMC-

CNN. Notably, the TL-based strategy yields the highest values for the proposed method. The IAO-ILSTM-NN 

achieves an f-measure of 89% (WISDOM), 90% (MHealth), and 91% (Leukemia) compared to all other models. 

IAO-ILSTM-NN helps improve illness diagnosis due to its high-quality result. HLA and SMO-DNN results, 

among other approaches now in use, and AMC-CNN, are (78% - WISDOM, and 81% - MHealth, 85%), (79% - 

WISDOM, and 83% - MHealth, 89%), and (85% - WISDOM, and 89% - MHealth, 90%), respectively. Thus, the 

proposed algorithm outperforms existing algorithms, yielding superior validation results for predicting cancer 

diseases.The AMC-CNN method is sensitive to weak edges and provides suboptimal HAR results. The HLA 

method tends to identify the brightest part in the inactivity region, resulting in inaccurate detection. Conversely, 

the proposed method, benefiting from deep features extracted from the pretrained IAO-ILSTM-NN, is less 

affected by noisy data and, with optimal hyperparameters, achieves desirable HAR results.  

 

 
Fig.9. The distribution of MCC validation values 

 

The four similar MCC distributions are shown in Figure 9. Taking into account the mean precision metrics, IAO-

ILSTM-NN outperforms the other approaches. Notably, the TL-based strategy yields the highest values for the 

proposed method. The IAO-ILSTM-NN achieves an MCC of 89% (WISDOM), 91% (MHealth), and 92% 

(Leukemia) compared to all other frameworks. The outcomes of other approaches comparison, such as HLA, 

SMO-DNN, and AMC-CNN, the high quality produced by the suggested IAO-ILSTM-NN may improve illness 

identification. To forecast cancer illnesses, the suggested algorithm performs better than current algorithms in 

terms of validation findings. Through the analysis of experimental results, here is how well the current approaches 

perform. In comparison with the mentioned methods, the proposed approach can, to a certain extent, overcome 

the influence of activity and accurately extract activity boundaries through the efficient IAO method. 

 

 
Fig.10. The distribution of Specificity validation values 
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In Figure 10, the graph illustrates that IAO-ILSTM-NN achieves specificity values of 91.5% (WISDOM), 92.2% 

(MHealth), and 92.5% (Leukemia) compared to all other models. The high quality generated by the proposed 

IAO-ILSTM-NN can significantly enhance disease detection. In contrast, existing methods such as SMO-DNN 

(84% - WISDOM, and 86% - MHealth), HLA (88% - WISDOM, and 89% - MHealth), and AMC-CNN (89% - 

WISDOM, 91% - and MHealth 92%) yield lower specificity values. Therefore, the proposed algorithm excels 

over existing algorithms in terms of achieving superior validation results for predicting human activity. The 

observed outcomes specify that the suggested technique has attained similar or better outcomes compared to other 

approaches, demonstrating its effectiveness with the IAO method in achieving accurate Human Activity 

Recognition (HAR).  

 

 
Fig.11. The distribution of Sensitivity validation values 

 

In Figure 11, the graph illustrates that IAO-ILSTM-NN achieves an accuracy of 91% (WISDOM) and 92% 

(MHealth) compared to all other models. The high-quality outcomes produced by the proposed IAO-ILSTM-NN 

can significantly enhance Human Activity Recognition (HAR) classification. Consequently, the offered methods 

are surpassed by the recommended strategy in terms of superior validation results for human behavior prediction. 

Focusing on detection efficiency, this suggested approach takes into account the benefits of the hyperparameters 

selection module as well as the precision of detection targets.  

 

4. Conclusion and Future Work 

 

The AMC-CNN model introduced in this study excels in capturing sample characteristics within time series data, 

optimizing the deep learning network structure, and enhancing Human Activity Recognition (HAR) capabilities. 

This approach has substantial application value in a variety of disciplines, including human-computer interaction, 

sports, and healthcare, by fusing deep learning with DA in sensor-based human activity perception. Data 

augmentation plays a crucial role in elevating the feature representation capacity of HAR, leading to heightened 

discrimination among various activities in time series and improving the overall data quality of samples. The 

comparatively lightweight design of the IAO-ILSTM-NN facilitates effective mapping between feature data and 

human behaviors, thereby augmenting the efficiency of HAR. The inclusion of LSTM-NN with cell regulation 

and ReLU units contributes to increased accuracy. In this study, the IAO system is employed for hyperparameter 

tuning, leading to improved detection results for ILSTM-NN. Through the use of the WISDM and MHEALTH 

datasets, experimental findings illustrate how well IAO-ILSTM-NN performs in recognizing human activity in 

single-sensor and multi-sensor settings. While the proposed technique focuses on sensor-based HAR, there 

remains a need for further research on lightweight real-time HAR methods depends on CV and WiFi. Future 

endeavors will involve applying IAO-ILSTM-NN to HAR in specific scenarios. We also want to expand the scope 

of our research to include more deep learning models and datasets, such as deep Boltzmann machines and DBNs. 
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