Geodetic Number of Soft Graphs of Petersen Graph

T. Jones ${ }^{1}$, K. Palani ${ }^{\mathbf{2}}$
${ }^{1}$ Assistant Professor, Department of Mathematics and Research Centre, Sarah Tucker College, Tirunelveli \& Research Scholar, Registration Number: 19222012092004, PG \& Research Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi
${ }^{2}$ Associate Professor and Head, PG \& Research Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India.
Email: ${ }^{1}$ jones@sarahtuckercollege.edu.in ${ }^{2}$ palani@apcmcollege.ac.in

Abstract

Let $G^{*}=(\mathrm{V}, \mathrm{E})$ be a simple graph and $\mathrm{A} \subseteq V\left(G^{*}\right)$ be any non-empty set of parameters. Let ρ be an arbitrary relation from A to V where (F, A) and (K, A) are soft sets over V and E respectively. $\mathrm{H}(\mathrm{a})=(\mathrm{F}(\mathrm{a})$, $\mathrm{K}(\mathrm{a}))$ is an induced subgraph of G^{*} for all $\mathrm{a} \in \mathrm{A}$.Then, $\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)=\{\mathrm{H}(\mathrm{a}) / a \in \mathrm{~A}\} \cong \underset{a \in \mathrm{~A}}{\cup} H(a)$ is called the soft graph of G^{*} corresponding to the parameter set A and the relation ρ. It is said to be a T1- soft graph of G^{*} only if $\mathrm{H}(\mathrm{a})$ is connected $\forall a \in$ A.Otherwise it is called a T12-soft graph of G^{*}. Every T1-soft graph is also a T12-soft graph of G^{*} and not the converse. The geodetic set of ($G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$) is introduced by K Palani et al.[7] and is defined as the union of geodetic sets of the induced sub graphs $\mathrm{H}(\mathrm{a})$ where $\mathrm{a} \in \mathrm{A}$. A geodetic set of a T1 or T12- soft graph of G^{*} of minimum cardinality is said to be a minimum geodetic set of ($G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$). The geodetic number of ($G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$) is the cardinality of a minimum geodetic set of $\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$. The geodetic number of $\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is denoted as $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]$ whereas the geodetic number of any graph G is $\mathrm{g}(\mathrm{G})$.This paper analyses the soft graphs of Petersen graphand geodeticnumber of different soft graphs of Petersen graph.

Keywords: Geodetic Number, Soft Graph, Parameter, Petersen Graph.

1. Introduction

Molodtsov [5] introduced soft set theory in 1999 as a general mathematical tool for dealing with uncertainties. Maji, Biswas and Roy [4] made a theoretical study of the soft set theory in more detail.In2014, Rajesh K.Thumbakara and Bobin George [9] introduced the new notion soft graph using soft sets. In 2015, Akram M and Nawaz S [1] introduced the concept of soft graphs in broad spectrum. The soft graph has been studied in more detail in few papers. The geodetic sets of a connected graph were introduced by Frank Harary, Emmanuel Loukakis and Constantine Tsouros [2], as a tool for studying metric properties of connected graphs.Soft graphs of some standard and special graphs have been discussed in [6] and [8]. The geodetic set of ($G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$) is introduced by K Palani et al. [7] and is defined as the union of geodetic sets of the induced sub graphs H (a) where a $\in A$
The Petersen graph is an undirected graph with 10 vertices and 15 edges. The Petersen graph is most commonly drawn as a pentagon with a pentagram inside, with five spokes. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-colouring. In 1993, geodetic number of the Petersen graph is calculated in [2]. Here, the soft graph of Petersen graph is found and the geodetic number of various soft graphs of Petersen graph is evaluated. Also, geodetic number of soft graphs of edge- operated and vertex added Petersen graph is calculated. This work discusses the geodetic number of different soft graphs of the Petersen graph and so the Petersen graph is considered as G^{*} throughout.

2. Preliminaries

2.1 Definition: [9]

Let $G^{*}=(\mathrm{V}, \mathrm{E})$ be a simple graph and A be any non-empty set. Let $R \subseteq \mathrm{~A} \times \mathrm{V}$ be an arbitrary relation. A set valued function $\mathrm{F}: \mathrm{A} \rightarrow \mathrm{P}(\mathrm{V})$ can be defined as $\mathrm{F}(\mathrm{x})=\{\mathrm{y} \in \mathrm{V} / \mathrm{xRy}\}$. The pair
(F, A) is a soft set over V. Then, (F, A) is said to be a soft graph of G^{*}, if the subgraph induced by $\mathrm{F}(\mathrm{x})$ in G^{*} is a connected subgraph of G^{*} for all $x \in A$. The set of all soft graph of G^{*} is denoted by $\operatorname{SG}\left(G^{*}\right)$.

2.2 Definition: [1]

Let $G^{*}=(\mathrm{V}, \mathrm{E})$ be a crisp graph and A be any non-empty set of parameters. Let $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{V}$ be an arbitrary relation. A mapping $F: A \rightarrow P(V)$ can be defined as $F(x)=\{y \in V / x R y\}$ and a mapping $K: A \rightarrow P(E)$ can be defined as $K(x)=\{u v \in E /\{u, v\} \subseteq F(x)\}$.
A 4-tuple $\mathrm{G}=\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is called a soft graph of G^{*} if it satisfies the following properties:
(i) $\quad G^{*}=(\mathrm{V}, \mathrm{E})$ is a simple graph
(ii) A is a nonempty set of parameters
(iii)(F, A) is a soft set over V
(iv) (K, A) is a soft set over E
(v)(F (a), $\mathrm{K}(\mathrm{a}))$ is a subgraph of G^{*} for all a $\in \mathrm{A}$

The subgraph ($\mathrm{F}(\mathrm{a}), \mathrm{K}(\mathrm{a})$) is denoted by $\mathrm{H}(\mathrm{a})$. The set of all soft graphs of G^{*} is denoted by $\mathrm{SG}\left(G^{*}\right)$

2.3 Definition:[7]

The geodetic set of the soft graph $\left(G^{*}, F, K, A\right)$ is the union of geodetic sets of the induced subgraphs $\mathrm{H}(\mathrm{a})$, where $\mathrm{a} \in \mathrm{A}$. A geodetic set of a minimum cardinality is said to be a minimum geodetic set of ($G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$). The geodetic number of $\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is the cardinality of a minimum geodetic set of $\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$.
2.4 Remark: [2] The Petersen graph has geodetic number 4, determined by any set of four independent nodes
2.5 Notation:The geodetic number of $\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is denoted as $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]$ whereas the geodetic of any graph G is $\mathrm{g}(\mathrm{G})$.

3. Soft Graphs of Petersen Graph

3.1 Observation:

1. Let $\mathrm{A} \subseteq V\left(G^{*}\right)$ be any singleton parameter set. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq 1$. Then, $\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $\mathrm{K}_{1,3}$ and it is a T1-soft graph of G^{*}.
2. Let $\mathrm{A} \subseteq V\left(G^{*}\right)$ be any telement parameter set. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq 1$. Then, $\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $t \mathrm{~K}_{1,3}$ and is again a T1- soft graph of G^{*}
3. Let $\mathrm{A} \subseteq V\left(G^{*}\right)$ be any singleton parameter set. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq 1$. The minimum geodetic sets corresponding to different possibilities of A are listed in the following table

Parameter set A	g-set
$\left\{\mathrm{v}_{1}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{w}_{1}\right\}$
$\left\{\mathrm{v}_{2}\right\}$	$\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{w}_{2}\right\}$
$\left\{\mathrm{v}_{3}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{w}_{3}\right\}$
$\left\{\mathrm{v}_{4}\right\}$	$\left\{\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{w}_{4}\right\}$
$\left\{\mathrm{v}_{5}\right\}$	$\left\{\mathrm{v}_{4}, \mathrm{v}_{1}, \mathrm{w}_{5}\right\}$
$\left\{\mathrm{w}_{1}\right\}$	$\left\{\mathrm{v}_{1}, \mathrm{w}_{3}, \mathrm{w}_{4}\right\}$
$\left\{\mathrm{w}_{2}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{w}_{4}, \mathrm{w}_{5}\right\}$
$\left\{\mathrm{w}_{3}\right\}$	$\left\{\mathrm{v}_{3}, \mathrm{w}_{5}, \mathrm{w}_{1}\right\}$
$\left\{\mathrm{w}_{4}\right\}$	$\left\{\mathrm{v}_{4}, \mathrm{w}_{1}, \mathrm{w}_{2}\right\}$
$\left\{\mathrm{w}_{5}\right\}$	$\left\{\mathrm{v}_{5}, \mathrm{w}_{2}, \mathrm{w}_{3}\right\}$

Table 3.1
From table 3.1, it is clear that $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K},\{\mathrm{v}\}\right)\right]=3 \forall \mathrm{v} \in \mathrm{V}\left(G^{*}\right)$
3.2 Theorem: Let $\mathrm{A} \subseteq V\left(G^{*}\right)$ be any two-element parameter set. Define $\rho: \mathrm{A} \rightarrow \mathrm{V}$ by $\mathrm{x} \rho y \Leftrightarrow d(x, y) \leq 1$. Then, $5 \leq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq 6$

Proof:

Let $\mathrm{A}=\{x, y\}$
Case 1: x , y are any two adjacent $\mathrm{v}_{\mathrm{i}}{ }^{\prime} \mathrm{s}$ or w_{i} 's From table $3.1, \mathrm{H}(\mathrm{x})$ and $\mathrm{H}(\mathrm{y})$ are isomorphic to $\mathrm{K}_{1,3}$ with disjoint geodetic sets. Therefore, $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]=6$

Case 2: x, y are any two non-adjacent v_{i} 's or $\mathrm{w}_{\mathrm{i}}{ }^{\prime} \mathrm{s}$ Again, the table 3.1 shows that the geodetic sets of $\mathrm{H}(\mathrm{x})$ and $\mathrm{H}(\mathrm{y})$ have one common element and so, $g\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]=5$

Case 3: x , y are in different cycles Here, ifx, y are adjacent or non-adjacent, correspondingly from table 3.1, it is clear that $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]$ is 5 or 6 From the above cases, $5 \leq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq 6$ if $|A|=2$ and $\mathrm{x} \rho y \Leftrightarrow$ $d(x, y) \leq 1$.
3.3 Theorem: Let $\mathrm{A} \subseteq V\left(G^{*}\right)$ be any three-element parameter set with all vertices from the outer pentagon. Then, g $\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]=\left\{\begin{array}{cc}8 & \text { if }\langle A\rangle=P_{3} \\ 7 & \text { otherwise }\end{array}\right.$

Proof: The following table shows a parameter set A, its geodetic sets and geodetic number

A	Geodetic sets	$\langle A\rangle=P_{3}$	Geodetic number
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{w}_{1}\right\} \cup\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{w}_{2}\right\} \cup\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{w}_{3}\right\}$	Yes	8
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}\right\}$	$\left.\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{w}_{1}\right\} \cup\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{w}_{2}\right\} \cup \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{w}_{4}\right\}$	No	7
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{5}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{w}_{1}\right\} \cup\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{w}_{2}\right\} \cup\left\{\mathrm{v}_{4}, \mathrm{v}_{1}, \mathrm{w}_{5}\right\}$	Yes	8
$\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{w}_{1}\right\} \cup\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{w}_{3}\right\} \cup\left\{\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{w}_{4}\right\}$	No	7
$\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{w}_{1}\right\} \cup\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{w}_{3}\right\} \cup\left\{\mathrm{v}_{4}, \mathrm{v}_{1}, \mathrm{w}_{5}\right\}$	No	7
$\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{w}_{1}\right\} \cup\left\{\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{w}_{4}\right\} \cup\left\{\mathrm{v}_{4}, \mathrm{v}_{1}, \mathrm{w}_{5}\right\}$	Yes	8
$\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$	$\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{w}_{2}\right\} \cup\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{w}_{3}\right\} \cup\left\{\left[\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{w}_{4}\right\}\right.$	Yes	8
$\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{5}\right\}$	$\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{w}_{2}\right\} \cup\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{w}_{3}\right\} \cup\left\{\mathrm{v}_{4}, \mathrm{v}_{1}, \mathrm{w}_{5}\right\}$	No	7
$\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$	$\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{w}_{2}\right\} \cup\left\{\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{w}_{4}\right\} \cup\left\{\mathrm{v}_{4}, \mathrm{v}_{1}, \mathrm{w}_{5}\right\}$	No	7
$\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{w}_{3}\right\} \cup\left\{\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{w}_{4}\right\} \cup\left\{\mathrm{v}_{4}, \mathrm{v}_{1}, \mathrm{w}_{5}\right\}$	Yes	8

Table 3.2 The proof follows from table 3.2
3.4 Remark: The following results are verified from similar tables for the concerned cases.
(i) If A contains all the three vertices from inner pentagram, then $7 \leq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq 8$
(ii)If A contains mixed elements of pentagon and pentagram, then $6 \leq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq 8$
3.5 Observations:Define $\rho: \mathrm{A} \longrightarrow \mathrm{V}$ by $\mathrm{x} \rho y \Leftrightarrow d(x, y) \leq 1$
(i)If $|A|=4$, then $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]$ takes any integer from 5 to10 except 7
(ii)If $|A|=5$, then , $8 \leq g\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq 10$
(iii)If $6 \leq|A| \leq 7$, then $9 \leq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq 10$
(iv)If $8 \leq|A| \leq 10$, then $g\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]=10$
3.6 Theorem: Let $\mathrm{A} \subseteq \mathrm{V}\left(G^{*}\right)$ be any t-element parameter set. Define $\rho: \mathrm{A} \rightarrow \mathrm{V}$ by
$\mathrm{x} \rho y \Leftrightarrow d(x, y) \leq 2$.Then, $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]=4$
Proof:

Here, $\mathrm{H}(\mathrm{a})$ for each element a of the parameter set is G^{*} itself and is of type $\operatorname{T1SG}\left(G^{*}\right)$.
The geodetic set of G^{*} is determined by any set of four independent nodes.Then,
$\mathrm{g}\left(G^{*}\right)=4$ which results in $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]=4$

3.7 Observation:

Let $\mathrm{A} \subseteq V\left(G^{*}\right)$ be any singleton parameter set.

1. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=1$.Then, $\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $\overline{K_{3}}$ and hence, disconnected .Further, $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K},\{\mathrm{v}\}\right)\right]=3 \forall \mathrm{v} \in \mathrm{V}\left(G^{*}\right)$
2. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=2$.Then, $\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to C_{6} and hence, $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}\right.\right.$, $\mathrm{K},\{\mathrm{v}\})]=2 \forall \mathrm{v} \in \mathrm{V}\left(G^{*}\right)$

4. Geodetic number of soft graphs of an edge removed Petersen graph

4.1 Theorem: Consider a Petersen graph G^{*}. Let e $\in E\left(G^{*}\right)$ and $A \subseteq \mathrm{~V}\left(G^{*}\right)$ be a singleton parameter set.

Define $\rho: A \rightarrow V$ by $x \rho y \Leftrightarrow \mathrm{~d}(x, y) \leq 1$. Then,
$\mathrm{g}\left(\left(G^{*}, \mathrm{~F}, \mathrm{~K},\{\mathrm{x}\}\right)\right]-1 \leq g\left[\left(G^{*}-e, \mathrm{~F}, \mathrm{~K},\{\mathrm{x}\}\right)\right] \leq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K},\{\mathrm{x}\}\right)\right] \forall \mathrm{x} \in \mathrm{V}\left(G^{*}\right)$

Proof:

Let $\mathrm{e}=\mathrm{uv}$ and $\mathrm{A}=\{\mathrm{x}\}$
Here, $\left(G^{*}-e, \mathrm{~F}, \mathrm{~K},\{\mathrm{x}\}\right)$ is isomorphic to P_{3} at u, v and $K_{1,3}$ at all other vertices. The following table depicts the geodetic sets of ($G^{*}-e, \mathrm{~F}, \mathrm{~K},\{\mathrm{x}\}$).

A	g -sets		
	$\left(G^{*}-\mathrm{v}_{1} \mathrm{v}_{2}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$	$\left(G^{*}-\mathrm{w}_{1} \mathrm{w}_{3}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$	$\left(G^{*}-\mathrm{w}_{1} \mathrm{v}_{1}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$
$\left\{\mathrm{v}_{1}\right\}$	$\left\{\mathrm{v}_{5}, \mathrm{w}_{1}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{w}_{1}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{5}\right\}$
$\left\{\mathrm{v}_{2}\right\}$	$\left\{\mathrm{v}_{3}, \mathrm{w}_{2}\right\}$	$\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{w}_{2}\right\}$	$\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{w}_{2}\right\}$
$\left\{\mathrm{v}_{3}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{w}_{3}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{w}_{3}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{w}_{3}\right\}$
$\left\{\mathrm{v}_{4}\right\}$	$\left\{\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{w}_{4}\right\}$	$\left\{\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{w}_{4}\right\}$	$\left\{\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{w}_{4}\right\}$
$\left\{\mathrm{v}_{5}\right\}$	$\left\{\mathrm{v}_{4}, \mathrm{v}_{1}, \mathrm{w}_{5}\right\}$	$\left\{\mathrm{v}_{4}, \mathrm{v}_{1}, \mathrm{w}_{5}\right\}$	$\left\{\mathrm{v}_{4}, \mathrm{v}_{1}, \mathrm{w}_{5}\right\}$
$\left\{\mathrm{w}_{1}\right\}$	$\left\{\mathrm{v}_{1}, \mathrm{w}_{3}, \mathrm{w}_{4}\right\}$	$\left\{\mathrm{v}_{1}, \mathrm{w}_{4}\right\}$	$\left\{\mathrm{w}_{3}, \mathrm{w}_{4}\right\}$
$\left\{\mathrm{w}_{2}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{w}_{4}, \mathrm{w}_{5}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{w}_{4}, \mathrm{w}_{5}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{w}_{4}, \mathrm{w}_{5}\right\}$
$\left\{\mathrm{w}_{3}\right\}$	$\left\{\mathrm{v}_{3}, \mathrm{w}_{5}, \mathrm{w}_{1}\right\}$	$\left\{\mathrm{v}_{3}, \mathrm{w}_{5}\right\}$	$\left\{\mathrm{v}_{3}, \mathrm{w}_{5}, \mathrm{w}_{1}\right\}$
$\left\{\mathrm{w}_{4}\right\}$	$\left\{\mathrm{v}_{4}, \mathrm{w}_{1}, \mathrm{w}_{2}\right\}$	$\left\{\mathrm{v}_{4}, \mathrm{w}_{1}, \mathrm{w}_{2}\right\}$	$\left\{\mathrm{v}_{4}, \mathrm{w}_{1}, \mathrm{w}_{2}\right\}$
$\left\{\mathrm{w}_{5}\right\}$	$\left\{\mathrm{v}_{5}, \mathrm{w}_{2}, \mathrm{w}_{3}\right\}$	$\left\{\mathrm{v}_{5}, \mathrm{w}_{2}, \mathrm{w}_{3}\right\}$	$\left\{\mathrm{v}_{5}, \mathrm{w}_{2}, \mathrm{w}_{3}\right\}$

Table 4.1
From table 4.1, $g\left[\left(G^{*}-e, \mathrm{~F}, \mathrm{~K},\{\mathrm{x}\}\right)\right]=\left\{\begin{array}{cc}2 \quad \text { if } x \text { is incident with e } \\ 3 \text { otherwise }\end{array}\right.$
It is checked that similar is the case with removal of any edge from G^{*}.
By observation 3.1, $\quad g\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K},\{\mathrm{x}\}\right)\right]=3$
Hence $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K},\{\mathrm{x}\}\right)\right]-1 \leq g\left[\left(G^{*}-e, \mathrm{~F}, \mathrm{~K},\{\mathrm{x}\}\right)\right] \leq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K},\{\mathrm{x}\}\right)\right]$
4.2 Observation: Consider G^{*}. Let e $\in E\left(G^{*}\right)$. Define $\rho: A \rightarrow V$ by $x \rho y \Leftrightarrow \mathrm{~d}(x, \mathrm{y}) \leq 1$

1. Let $\mathrm{A}=\{\mathrm{x}, \mathrm{y}\} \subseteq V\left(G^{*}\right)$ be the parameter set.Then, $4 \leq \mathrm{g}\left[\left(G^{*}-e, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq 6 \mathrm{n}$ Further, $g\left[\left(G^{*}-e, \mathrm{~F}, \mathrm{~K}\right.\right.$, $\mathrm{A})] \leq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]$
2. Let $\mathrm{A} \subseteq V\left(G^{*}\right)$ be any 3-element parameter set.Then, $5 \leq \mathrm{g}\left[\left(G^{*}-e, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq 8$. Also, $g\left[\left(G^{*}-e, \mathrm{~F}, \mathrm{~K}\right.\right.$, A) $] \leq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]$.
3. If A is any t-element parameter set, $g\left[\left(G^{*}-e, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]$

5. Geodetic number of soft graphs of a vertex added Petersen graph

5.1 Theorem: Let G^{*} be the Petersen graph.Let $A=\{x\} \subseteq V\left(G^{*}\right)$ be the parameter set. Define $\rho: A \rightarrow V$ by $\mathrm{x} \rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq 1$.Then,
$\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq g\left[\left(G^{*}+\mathrm{v}, \mathrm{F}, \mathrm{K}, \mathrm{A}\right)\right] \leq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]+1$.
Proof:
Attach a new vertex v to $v_{1} \in \mathrm{~V}\left(G^{*}\right)$. Let $A=\{x\}$ be the parameter set and given
$\mathrm{x} \rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq 1$. Also from observation 3.1, $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]=3$
Suppose the new vertex v is attached to a vertex v_{1} of G^{*}. The corresponding g - sets for singleton parameter set after adding a vertex are given in the following table.

A	g-sets
$\left\{\mathrm{v}_{1}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{w}_{1}, \mathrm{v}\right\}$
$\left\{\mathrm{v}_{2}\right\}$	$\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{w}_{2}\right\}$
$\left\{\mathrm{v}_{3}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{w}_{3}\right\}$
$\left\{\mathrm{v}_{4}\right\}$	$\left\{\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{w}_{4}\right\}$
$\left\{\mathrm{v}_{5}\right\}$	$\left\{\mathrm{v}_{4}, \mathrm{v}_{1}, \mathrm{w}_{5}\right\}$
$\left\{\mathrm{w}_{1}\right\}$	$\left\{\mathrm{v}_{1}, \mathrm{w}_{3}, \mathrm{w}_{4}\right\}$
$\left\{\mathrm{w}_{2}\right\}$	$\left\{\mathrm{v}_{2}, \mathrm{w}_{4}, \mathrm{w}_{5}\right\}$
$\left\{\mathrm{w}_{3}\right\}$	$\left\{\mathrm{v}_{3}, \mathrm{w}_{5}, \mathrm{w}_{1}\right\}$
$\left\{\mathrm{w}_{4}\right\}$	$\left\{\mathrm{v}_{4}, \mathrm{w}_{1}, \mathrm{w}_{2}\right\}$
$\left\{\mathrm{w}_{5}\right\}$	$\left\{\mathrm{v}_{5}, \mathrm{w}_{2}, \mathrm{w}_{3}\right\}$

Table 5.1
From table 5.1, $\mathrm{g}\left[\left(G^{*}+v, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]=3$ or 4 whereasg $\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]=3$
If v is attached to any vertex ' x ' other than v_{1}, the change happens only in the geodetic sets of v_{1}, and x in the above table. That is, for v_{1}, a 3-element set and for x, a 4-element set. Hence,
$\mathrm{g}\left[\left(G^{*}+\mathrm{v}, \mathrm{F}, \mathrm{K}, \mathrm{A}\right)\right]=3$ or 4
Therefore, $\mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq g\left[\left(G^{*}+\mathrm{v}, \mathrm{F}, \mathrm{K}, \mathrm{A}\right)\right] \leq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]+1$
5.2 Theorem: Let $\mathrm{A}=\{x, y\} \subseteq V\left(G^{*}\right)$ be the parameter set. Define $\rho: A \rightarrow V$ by $x \rho y \Leftrightarrow \mathrm{~d}(x, y) \leq 1$. Then, $5 \leq \mathrm{g}\left[\left(G^{*}+v, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq 7$.

Proof:

Let $A=\{x, y\}$ be the parameter set and given $\mathrm{x} \rho \mathrm{y} \Leftrightarrow \mathrm{d}(\mathrm{x}, \mathrm{y}) \leq 1$
As in the above theorem, if v is attached to any vertex ' x ' other than v_{1}, the change happens only in the geodetic sets of v_{1}, and x and hence $g\left[\left(G^{*}+\mathrm{v}, \mathrm{F}, \mathrm{K}, \mathrm{A}\right)\right]$ is 5 or 6 or 7 .
Then, $5 \leq \mathrm{g}\left[\left(G^{*}+v, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \leq 7$
5.3 Observation:If A beany t-element parameter set, then
$\mathrm{g}\left[\left(G^{*}+v, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right] \geq \mathrm{g}\left[\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)\right]$

6. Conclusion

This paper evaluates the geodetic number of soft graphs arising from Petersen graph and the changes due to removal of an edge or addition of a vertex.

7. References

1. Akram M ,.Nawaz S, ‘Operation on soft graphs', Fuzzy Information and
2. Engineering, (2015), 7(4) 423-449.
3. Frank Harary, Emmanuel Loukakis and ConstantinTsoubros, 'The Geodetic Number of a Graph'Math.Compute. Modelling Vol. 17, No. 11, pp. 89-95, 1993
4. Harary F, Graph Theory, (1969), Addison-Wesley Publishing Company, Inc.,
5. Maji P K, Biswas R, and. Roy A R,(2003) 'Soft set theory', Computers \& Mathematics with

Applications, vol. 45, no. 4-5, pp. 555-562
6. Molodtsov D(1999), 'Soft set theory-first results', Computers \& Mathematics with
7. Applications, vol. 37, no. 4-5, pp. 19-31
8. K. Palani et al ,'Soft Graphs of Certain Graphs'(2021),Journal of Physics:Volume 1947,(2021)01204
9. K. Palani, T. Jones, 'Geodetic number of soft graphs of certain graphs'(2021), Proceedings of ICMMMHPCST2021 ISBN No.: 978-81-951315-2-5 Department of Mathematics and Information Technology, Sri Sarada College for Women(Autonomous), Tirunelveli - 627011
10. Palani K, Jones T, 'Soft Graphs on Paths and Cycles', Journal of the Maharaja Sayajirao University of Baroda T, Vol 54, No.2(IX) 2020-2021 pg. 115
11. Rajesh K. Thumbakaral and Bobin George, 'Soft graphs', General Mathematics Notes', (2014), 21 (2) pp.75-86

