ISSN: 1827-7160

Volume 28 Issue 1, 2024

Geodetic Number of Soft Graphs of Petersen Graph

T. Jones¹, K. Palani²

¹Assistant Professor, Department of Mathematics and Research Centre, Sarah Tucker College, Tirunelveli & Research Scholar, Registration Number: 19222012092004, PG & Research Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi

² Associate Professor and Head, PG & Research Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India.

Email: ¹jones@sarahtuckercollege.edu.in²palani@apcmcollege.ac.in

Abstract: Let $G^* = (V, E)$ be a simple graph and $A \subseteq V(G^*)$ be any non-empty set of parameters. Let ρ be an arbitrary relation from A to V where (F, A) and (K, A) are soft sets over V and E respectively. H(a) = (F(a), K(a)) is an induced subgraph of G^* for all $a \in A$. Then, $(G^*, F, K, A) = \{H(a)/a \in A\} \cong \bigcup_{a \in A} H(a)$ is called the soft graph of G^* corresponding to the parameter set A and the relation ρ . It is said to be a T1- soft graph of G^* only if G^* is connected G^* and not the converse it is called a T12-soft graph of G^* . Every T1-soft graph is also a T12-soft graph of G^* and not the converse. The geodetic set of G^* , G^*

is the cardinality of a minimum geodetic set of (G^*, F, K, A) . The geodetic number of (G^*, F, K, A) is denoted as $g[(G^*, F, K, A)]$ whereas the geodetic number of any graph G is g(G). This paper analyses the soft graphs of Petersen graphand geodetic number of different soft graphs of Petersen graph.

Keywords: Geodetic Number, Soft Graph, Parameter, Petersen Graph.

1. Introduction

Molodtsov [5] introduced soft set theory in 1999 as a general mathematical tool for dealing with uncertainties. Maji, Biswas and Roy [4] made a theoretical study of the soft set theory in more detail.In2014, Rajesh K.Thumbakara and Bobin George [9] introduced the new notion soft graph using soft sets. In 2015, Akram M and Nawaz S [1] introduced the concept of soft graphs in broad spectrum. The soft graph has been studied in more detail in few papers. The geodetic sets of a connected graph were introduced by Frank Harary, Emmanuel Loukakis and Constantine Tsouros [2], as a tool for studying metric properties of connected graphs. Soft graphs of some standard and special graphs have been discussed in [6] and [8]. The geodetic set of (G^*, F, K, A) is introduced by K Palani et al. [7] and is defined as the union of geodetic sets of the induced sub graphs H (a) where $a \in A$

The **Petersen graph** is an undirected graph with 10 vertices and 15 edges. The Petersen graph is most commonly drawn as a pentagon with a pentagram inside, with five spokes. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-colouring. In 1993, geodetic number of the Petersen graph is calculated in [2]. Here, the soft graph of Petersen graph is found and the geodetic number of various soft graphs of Petersen graph is evaluated. Also, geodetic number of soft graphs of edge- operated and vertex added Petersen graph is calculated .This work discusses the geodetic number of different soft graphs of the Petersen graph and so the Petersen graph is considered as G^* throughout.

2. Preliminaries

2.1 Definition: [9]

Let $G^* = (V, E)$ be a simple graph and A be any non-empty set. Let $R \subseteq A \times V$ be an arbitrary relation. A set valued function F:A \rightarrow P(V)can be defined as F(x)={y \in V/ xRy}. The pair

2237

ISSN: 1827-7160

Volume 28 Issue 1, 2024

(F, A) is a soft set over V. Then,(F,A) is said to be a **soft graph** of G^* , if the subgraph induced by F(x) in G^* is a connected subgraph of G^* for all $x \in A$. The set of all soft graph of G^* is denoted by SG(G^*).

2.2 Definition: [1]

Let $G^* = (V, E)$ be a crisp graph and A be any non-empty set of parameters. Let $R \subseteq A \times V$ be an arbitrary relation. A mapping F: $A \to P(V)$ can be defined as $F(x) = \{y \in V/x \ R \ y\}$ and a mapping K: $A \to P(E)$ can be defined as $K(x) = \{uv \in E/\{u, v\} \subseteq F(x)\}$.

A 4-tuple $G = (G^*, F, K, A)$ is called a **soft graph** of G^* if it satisfies the following properties:

- (i) $G^* = (V, E)$ is a simple graph
- (ii) A is a nonempty set of parameters

(iii)(F, A) is a soft set over V

(iv)(K, A) is a soft set over E

(v)(F(a), K(a)) is a subgraph of G^* for all $a \in A$

The subgraph (F (a), K (a)) is denoted by H (a). The set of all soft graphs of G^* is denoted by $SG(G^*)$

2.3 Definition:[7]

The geodetic set of the soft graph (G^*, F, K, A) is the union of geodetic sets of the induced subgraphs H(a), where $a \in A$. A geodetic set of a minimum cardinality is said to be a minimum geodetic set of (G^*, F, K, A) . The geodetic number of (G^*, F, K, A) is the cardinality of a minimum geodetic set of (G^*, F, K, A) .

- 2.4 Remark: [2] The Petersen graph has geodetic number 4, determined by any set of four independent nodes
- **2.5 Notation:** The geodetic number of (G^*, F, K, A) is denoted as $g[(G^*, F, K, A)]$ whereas the geodetic of any graph G is g(G).

3. Soft Graphs of Petersen Graph

3.1 Observation:

- 1. Let $A \subseteq V(G^*)$ be any singleton parameter set. Define $\rho : A \to V$ by $x \rho y \iff d(x, y) \le 1$. Then, (G^*, F, K, A) is isomorphic to $K_{1,3}$ and it is a T1- soft graph of G^* .
- 2. Let $A \subseteq V(G^*)$ be any t element parameter set. Define $\rho: A \to V$ by $x \rho y \iff d(x, y) \le 1$. Then, (G^*, F, K, A) is isomorphic to $tK_{1,3}$ and is again a T1- soft graph of G^*
- 3. Let $A \subseteq V(G^*)$ be any singleton parameter set. Define $\rho: A \to V$ by $x \rho y \Leftrightarrow d(x, y) \leq 1$. The minimum geodetic sets corresponding to different possibilities of A are listed in the following table

Parameter set A	g-set
{v ₁ }	$\{v_2, v_5, w_1\}$
{v ₂ }	$\{v_1, v_3, w_2\}$
{v ₃ }	$\{v_2, v_4, w_3\}$
{v ₄ }	$\{v_3,v_5,w_4\}$
{v ₅ }	$\{v_4, v_1, w_5\}$
{w ₁ }	$\{v_1, w_3, w_4\}$
{w ₂ }	$\{v_2, w_4, w_5\}$
{w ₃ }	$\{v_3, w_5, w_1\}$
$\{w_4\}$	$\{v_4, w_1, w_2\}$
{w ₅ }	$\{v_5, w_2, w_3\}$

Table 3.1

From table 3.1, it is clear that $g[(G^*, F, K, \{v\})] = 3 \forall v \in V(G^*)$

3.2 Theorem: Let $A \subseteq V(G^*)$ be any two-element parameter set. Define $\rho : A \longrightarrow V$ by $x \rho y \Leftrightarrow d(x,y) \leq 1$. Then, $5 \leq g[(G^*, F, K, A)] \leq 6$

ISSN: 1827-7160

Volume 28 Issue 1, 2024

Proof:

Let $A = \{x, y\}$

Case 1: x, y are any two adjacent v_i 's or w_i 's From table 3.1, H(x) and H(y) are isomorphic to $K_{1,3}$ with disjoint geodetic sets. Therefore, $g[(G^*, F, K, A)] = 6$

Case 2: x, y are any two non-adjacent v_i 's or w_i 's Again, the table 3.1 shows that the geodetic sets of H(x) and H(y) have one common element and so, $g[(G^*, F, K, A)] = 5$

Case 3: x, y are in different cycles Here, if x, y are adjacent or non-adjacent, correspondingly from table 3.1, it is clear that $g[(G^*, F, K, A)]$ is 5 or 6 From the above cases, $5 \le g[(G^*, F, K, A)] \le 6$ if |A| = 2 and $x \rho y \Leftrightarrow d(x,y) \le 1$.

3.3 Theorem: Let $A \subseteq V(G^*)$ be any three-element parameter set with all vertices from the outer pentagon. Then, g $[(G^*, F, K, A)] = \begin{cases} 8 & if \ \langle A \rangle = P_3 \\ 7 & otherwise \end{cases}$

Proof: The following table shows a parameter set A, its	geodetic sets and ge	eodetic number
--	----------------------	----------------

A	Geodetic sets	$\langle A \rangle = P_3$	Geodetic number
$\{v_1, v_2, v_3\}$	$\{v_2, v_5, w_1\} \cup \{v_1, v_3, w_2\} \cup \{v_2, v_4, w_3\}$	Yes	8
$\{v_1,v_2,v_4\}$	$\{v_2, v_5, w_1\} \cup \{v_1, v_3, w_2\} \cup v_3, v_5, w_4\}$	No	7
$\{v_1, v_2, v_5\}$	$\{v_2, v_5, w_1\} \cup \{v_1, v_3, w_2\} \cup \{v_4, \overline{v_1}, w_5\}$	Yes	8
$\{v_1,v_3,v_4\}$	$\{v_2, v_5, w_1\} \cup \{v_2, v_4, w_3\} \cup \{v_3, v_5, w_4\}$	No	7
$\{v_1, v_3, v_5\}$	$\{v_2, v_5, w_1\} \cup \{\overline{v_2}, v_4, w_3\} \cup \{\overline{v_4}, v_1, w_5\}$	No	7
$\{v_1, v_4, v_5\}$	$\{v_2, v_5, w_1\} \cup \{v_3, v_5, w_4\} \cup \{v_4, v_1, w_5\}$	Yes	8
$\{v_2, v_3, v_4\}$	$\{v_1, v_3, w_2\} \cup \{v_2, v_4, w_3\} \cup \{v_3, v_5, w_4\}$	Yes	8
$\{v_2, v_3, v_5\}$	$\{v_1, v_3, w_2\} \cup \{v_2, v_4, w_3\} \cup \{v_4, v_1, w_5\}$	No	7
$\{v_2, v_4, v_5\}$	$\{v_1, v_3, w_2\} \cup \{\overline{v_3}, v_5, w_4\} \cup \{v_4, \overline{v_1}, w_5\}$	No	7
$\{v_3, v_4, v_5\}$	$\{v_2, v_4, w_3\} \cup \{v_3, v_5, w_4\} \cup \{\boxed{v_4}, v_1, w_5\}$	Yes	8

Table 3.2 The proof follows from table 3.2

- **3.4 Remark:** The following results are verified from similar tables for the concerned cases.
- (i) If A contains all the three vertices from inner pentagram, then $7 \le g[(G^*, F, K, A)] \le 8$
- (ii) If A contains mixed elements of pentagon and pentagram, then $6 \le g[(G^*, F, K, A)] \le 8$
- **3.5 Observations:** Define $\rho: A \rightarrow V$ by $x \rho y \Leftrightarrow d(x, y) \leq 1$
- (i)If |A| = 4, then $g[(G^*, F, K, A)]$ takes any integer from 5 to 10 except 7
- (ii)If |A|=5, then, $8 \le g[(G^*, F, K, A)] \le 10$
- (iii)If $6 \le |A| \le 7$, then $9 \le g[(G^*, F, K, A)] \le 10$
- (iv)If $8 \le |A| \le 10$, then $g[(G^*, F, K, A)] = 10$
- **3.6 Theorem:** Let $A \subseteq V(G^*)$ be any t-element parameter set. Define $\rho : A \longrightarrow V$ by $x \rho y \Leftrightarrow d(x,y) \leq 2$. Then, $g[(G^*, F, K, A)] = 4$

Proof:

ISSN: 1827-7160

Volume 28 Issue 1, 2024

Here, H(a) for each element a of the parameter set is G^* itself and is of type T1SG(G^*).

The geodetic set of G^* is determined by any set of four independent nodes. Then,

 $g(G^*)=4$ which results in $g[(G^*, F, K, A)]=4$

3.7 Observation:

Let $A \subseteq V(G^*)$ be any singleton parameter set.

- 1. Define $\rho: A \to V$ by $x \rho y \Leftrightarrow d(x, y) = 1$. Then, (G^*, F, K, A) is isomorphic to $\overline{K_3}$ and hence, disconnected. Further, $g[(G^*, F, K, \{v\})] = 3 \forall v \in V(G^*)$
- 2. Define $\rho: A \to V$ by $x \rho y \iff d(x, y) = 2$. Then, (G^*, F, K, A) is isomorphic to C_6 and hence, $g[(G^*, F, K, \{v\})] = 2 \ \forall \ v \in V(G^*)$

4. Geodetic number of soft graphs of an edge removed Petersen graph

4.1 Theorem: Consider a Petersen graph G^* . Let $e \in E(G^*)$ and $A \subseteq V(G^*)$ be a singleton parameter set. Define $\rho: A \to V$ by $x \rho y \iff d(x, y) \le 1$. Then,

$$g\left((G^*, F, K, \{x\})\right] - 1 \leq g\left[(G^* - e, F, K, \{x\})\right] \leq g\left[(G^*, F, K, \{x\})\right] \ \forall \ x \in V(G^*)$$

Proof:

Let e = uv and $A = \{x\}$

Here, $(G^* - e, F, K, \{x\})$ is isomorphic to P_3 at u, v and $K_{1,3}$ at all other vertices. The following table depicts the geodetic sets of $(G^* - e, F, K, \{x\})$.

	g-sets		
A	$(G^*-\mathrm{v}_1\mathrm{v}_2,\mathrm{F},\mathrm{K,\!A})$	$(G^*-w_1w_3,\!F,K,A)$	$(G^* - w_1v_1, F, K, A)$
{v ₁ }	$\{v_5, w_1\}$	$\{v_2, v_5, w_1\}$	$\{v_2, v_5\}$
{v ₂ }	$\{v_3, w_2\}$	$\{v_1,v_3,w_2\}$	$\{v_1,v_3,w_2\}$
{v ₃ }	$\{v_2,v_4,w_3\}$	$\{v_2, v_4, w_3\}$	$\{v_2,v_4,w_3\}$
{v ₄ }	$\{v_3,v_5,w_4\}$	$\{v_3,v_5,w_4\}$	$\{v_3, v_5, w_4\}$
$\{v_5\}$	$\{v_4, v_1, w_5\}$	$\{v_4,v_1,w_5\}$	$\{v_4, v_1, w_5\}$
$\{\mathbf{w_1}\}$	$\{v_1, w_3, w_4\}$	$\{v_1, w_4\}$	$\{w_3, w_4\}$
{w ₂ }	$\{v_2, w_4, w_5\}$	$\{v_2, w_4, w_5\}$	$\{v_2, w_4, w_5\}$
{w ₃ }	$\{v_3, w_5, w_1\}$	$\{v_3, w_5\}$	$\{v_3, w_5, w_1\}$
$\{w_4\}$	$\{v_4, w_1, w_2\}$	$\{v_4, w_1, w_2\}$	$\{v_4, w_1, w_2\}$
{w ₅ }	$\{v_5, w_2, w_3\}$	$\{v_5, w_2, w_3\}$	$\{v_5, w_2, w_3\}$

Table 4.1

From table 4.1,
$$g[(G^* - e, F, K, \{x\})] = \begin{cases} 2 & \text{if } x \text{ is incident with } e \end{cases}$$

It is checked that similar is the case with removal of any edge from G^* .

By observation 3.1, $g[(G^*, F, K, \{x\})] = 3$

Hence $g[(G^*, F, K, \{x\})] - 1 \le g[(G^* - e, F, K, \{x\})] \le g[(G^*, F, K, \{x\})]$

- **4.2 Observation:** Consider G^* . Let $e \in E(G^*)$. Define $\rho : A \to V$ by $x\rho y \Leftrightarrow d(x, y) \le 1$
- 1. Let $A = \{x, y\} \subseteq V(G^*)$ be the parameter set. Then, $4 \le g[(G^* e, F, K, A)] \le 6n$ Further, $g[(G^* e, F, K, A)] \le g[(G^*, F, K, A)]$
- 2. Let $A \subseteq V(G^*)$ be any 3-element parameter set. Then, $5 \le g[(G^* e, F, K, A)] \le 8$. Also, $g[(G^* e, F, K, A)] \le g[(G^*, F, K, A)]$.
- 3. If A is any t-element parameter set, $g[(G^* e, F, K, A)] \le g[(G^*, F, K, A)]$

5. Geodetic number of soft graphs of a vertex added Petersen graph

5.1 Theorem: Let G^* be the Petersen graph.Let $A = \{x\} \subseteq V(G^*)$ be the parameter set. Define $\rho : A \to V$ by $x \rho y \iff d(x, y) \le 1$. Then,

 $g[(G^*, F, K, A)] \le g[(G^* + v, F, K, A)] \le g[(G^*, F, K, A)] + 1.$

Proof:

Attach a new vertex v to $v_1 \in V(G^*)$. Let $A = \{x\}$ be the parameter set and given

ISSN: 1827-7160

Volume 28 Issue 1, 2024

 $x \rho y \iff d(x, y) \le 1$. Also from observation 3.1, $g[(G^*, F, K, A)] = 3$

Suppose the new vertex v is attached to a vertex v_1 of G^* . The corresponding g- sets for singleton parameter set after adding a vertex are given in the following table.

A	g - sets
{v ₁ }	$\{v_2, v_5, w_1, v\}$
{v ₂ }	$\{v_1, v_3, w_2\}$
{v ₃ }	$\{v_2, v_4, w_3\}$
$\{v_4\}$	$\{v_3,v_5,w_4\}$
{v ₅ }	$\{v_4, v_1, w_5\}$
{w ₁ }	$\{v_1,w_3,w_4\}$
{w ₂ }	$\{v_2, w_4, w_5\}$
{w ₃ }	$\{v_3,w_5,w_1\}$
{w ₄ }	$\{v_4, w_1, w_2\}$
{w ₅ }	$\{v_5, w_2, w_3\}$

Table 5.1

From table 5.1, $g[(G^* + v, F, K, A)] = 3$ or 4 whereasg $[(G^*, F, K, A)] = 3$

If v is attached to any vertex 'x' other than v_1 , the change happens only in the geodetic sets of v_1 , and x in the above table. That is, for v_1 , a 3-element set and for x, a 4-element set. Hence,

 $g[(G^* + v, F, K, A)] = 3 \text{ or } 4$

Therefore, $g[(G^*, F, K, A)] \le g[(G^* + v, F, K, A)] \le g[(G^*, F, K, A)] + 1$

5.2 Theorem: Let $A = \{x, y\} \subseteq V(G^*)$ be the parameter set. Define $\rho : A \to V$ by $x\rho y \iff d(x, y) \le 1$. Then, $5 \le g[(G^* + v, F, K, A)] \le 7$.

Proof:

Let A = $\{x, y\}$ be the parameter set and given $x \rho y \iff d(x, y) \le 1$

As in the above theorem, if v is attached to any vertex 'x' other than v_1 , the change happens only in the geodetic sets of v_1 , and x and hence $g[(G^* + v, F, K, A)]$ is 5 or 6 or 7.

Then, $5 \le g[(G^* + v, F, K, A)] \le 7$

5.3 Observation:If A beany t-element parameter set, then $g[(G^* + v, F, K, A)] \ge g[(G^*, F, K, A)]$

6. Conclusion

This paper evaluates the geodetic number of soft graphs arising from Petersen graph and the changes due to removal of an edge or addition of a vertex.

7. References

- 1. Akram M, Nawaz S, 'Operation on soft graphs', Fuzzy Information and
- 2. Engineering, (2015), 7(4) 423-449.
- 3. Frank Harary, Emmanuel Loukakis and ConstantinTsoubros, 'The Geodetic Number of a Graph'Math.Compute. Modelling Vol. 17, No. 11, pp. 89-95, 1993
- 4. Harary F, Graph Theory, (1969), Addison-Wesley Publishing Company, Inc.,
- 5. Maji P K, Biswas R, and. Roy A R,(2003) 'Soft set theory', Computers & Comp

ISSN: 1827-7160

Volume 28 Issue 1, 2024

- Applications, vol. 45, no. 4-5, pp. 555–562
- 6. Molodtsov D(1999), 'Soft set theory—first results', Computers & D(1999), 'Mathematics with
- 7. Applications, vol. 37, no. 4-5, pp. 19–31
- 8. K. Palani et al, 'Soft Graphs of Certain Graphs' (2021), Journal of Physics: Volume 1947, (2021)01204
- 9. K. Palani, T. Jones, 'Geodetic number of soft graphs of certain graphs' (2021), Proceedings of ICMMMHPCST2021 ISBN No.: 978-81-951315-2-5 Department of Mathematics and Information Technology, Sri Sarada College for Women (Autonomous), Tirunelveli 627011
- 10. Palani K, Jones T, 'Soft Graphs on Paths and Cycles', Journal of the Maharaja Sayajirao University of Baroda T, Vol 54, No.2(IX) 2020-2021 pg. 115
- 11. Rajesh K. Thumbakara1 and Bobin George, 'Soft graphs', General Mathematics Notes', (2014), 21 (2) pp.75-86