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Abstract: The This paper explores feature extraction algorithms with machine learning strategies to identify epileptic seizures 

from ElectroEncephaloGram (EEG) signals. Sudden, unpredictable neurological occurrences known as epileptic seizures 

frequently show up as aberrant electrical activity in the brain. EEG signals offer essential insights into these dynamics, but 

successful detection requires sophisticated computational methods because of their intrinsic complexity. This study examines 

feature selection methodologies, which are as follows: correlation-based, information gain, recursive feature elimination, L1 

regularization, random forest, principal component analysis, and independent component analysis. This approach enhances the 

efficacy of diagnostic procedures and facilitates the administration of appropriate therapeutic interventions. These 

methodologies enable extracting pertinent patterns and features from EEG information. The collected characteristics function 

as distinctive inputs for machine learning models, facilitating the creation of resilient seizure detection systems. Several 

machine-learning methods, including Decision Trees (DT), Random Forest (RF), Naive Bayes (NB), K-Nearest Neighbor 

(KNN), and eXtreme Gradient Boost (XGBoost), are utilized to acquire complex patterns from the retrieved information. The 

presented methodology demonstrates encouraging outcomes regarding sensitivity, specificity, and accuracy for identifying 

epileptic episodes. This study enhances non-invasive epileptic seizure detection approaches by integrating feature extraction 

procedures with machine learning techniques. The findings of this study have considerable implications for expediting 

intervention and tailoring treatment approaches for persons diagnosed with epilepsy, thereby improving their overall quality 

of life and well-being. 

Keywords: Feature extraction methods, Machine learning, Electroencephalogram, Classification algorithms, Epileptic seizure 

and non-seizure data. 

 

1. Introduction 

An epileptic seizure is a chronic neurological and noncommunicable disease with unusual brain electrical 

activity (Alotaiby et al., 2017; O’Shea et al., 2021), and around the world, more than 60–70 million (Ahmad et 

al., 2022; Dissanayake et al., 2021) of the population is affected by this disorder. The epileptic patient faces many 

body control problems due to sudden changes in neurological bio-signal electrical activity (Vidyaratne & 

Iftekharuddin, 2017). The patients feel dizziness, headache, fainting, loss of mental control, and loss of confidence 

in working for daily life, including cooking, driving, reading, writing, etc. (Alzami et al., 2018; Samiee et al., 

2015). As per the study (Tiwari et al., 2017), the recognition of epileptic seizure patterns by medical practitioners 

is a challenging and time-consuming task. This study (Parvez & Paul, 2017) shows statistically that some patients 

have temporal variations in high-frequency oscillation distribution. High-frequency oscillations are becoming a 

popular electrical seizure biomarker. Hence, opera-tor-independent automated approaches are needed to identify 

and classify them. So, automated and semi-automated (Tiwari et al., 2017) systems would benefit the medical 

team to diagnose the patient's disorder and provide timely treatment. 

In machine learning and data analysis, feature selection (Dissanayake et al., 2021) is a crucial process that can 

boost model performance and reduce computing complexity by identifying the most important features or 
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variables. This article shows different methodologies for extracting features from EEG data. It is explained in a 

literature review section for feature selection processes (Pearce et al., 2013; Zarei & Asl, 2021), which are as 

follows: correlation-based, information gain, recursive feature elimination, L1 regularization, random forest, 

principal component analysis, sequential forward se-lection using K-Nearest Neighbors (KNN), and sequential 

backward selection using KNN. The researchers (Xun et al., 2016) presented a rational Discrete Short Time 

Fourier Transform (STFT) as an adaptive extension of the conventional STFT. This meth-od was applied to detect 

epileptic seizures in EEG signals, resulting in a concise representation of the signal in the time-frequency domain. 

Moreover, the pro-posed technique excellently extracted relevant features from the EEG signals. The authors 

(Açıkoğlu & Tuncer, 2020) suggested a feature extraction method for EEG data categorization based on picture 

matching using local binary patterns to identify interest zones, and the proposed method classifies using SVM. 

The scholars (Ahmad et al., 2022; Gupta et al., 2018; Korshunova et al., 2018) must determine the transition 

between the interictal and preictal periods to predict the ictal state from EEG. It includes splitting the signal into 

epochs and extracting global and local features. Two correlated signals' undulated global characteristic is 

determined by phase correlation. This method can accurately detect motion between pictures or blocks or estimate 

EEG signal transitions between interictal and preictal/ictal periods. In their study, the researchers (Ozcan & Erturk, 

2019) outlined many methodologies that have been devised for the classification of epileptic data. These 

methodologies encompass wavelet packet analysis, modular energy and modular entropy approaches, non-linear 

distribution techniques, approximate entropy and sample entropy computations, and the utilization of the greatest 

Lyapunov exponent and correlation dimension. The article (Ahmad et al., 2022; Billeci et al., 2018) covered 

epilepsy attack data collection, feature extraction, classification, and post-processing. Although (Stojanović et al., 

2020) numerous short-term projections exist, accurately assessing the occurrence of a missed or expected seizure 

can be a complex task. Two often employed metrics in this context are lead sensitivity, which measures the ability 

to identify positive cases correctly, and precision, also known as positive predictive value, which quantifies the 

proportion of correctly identified positive cases out of all the cases identified as positive. 

The article follows a structured approach, beginning with an Introduction to outline the context and significance 

of the research. The background and related work are under Section 2. The Problem statement, Section 3, clearly 

defines the research problem and objectives. Methodology details the approach to addressing the issue, including 

data collection, analysis techniques, and modeling methods, in Section 4. Results present the findings obtained 

from applying the methodology to the dataset, Section 5. Finally, Section 6, the Conclusion, summarizes the key 

findings, discusses their implications, and suggests directions for future research. This sequential organization 

ensures a coherent presentation of the research process and its outcomes. 

 

2. Background and Related Work 

This research (Xun et al., 2016) introduced an effective and unique feature extraction approach for 

epileptic seizure detection in EEG recordings. It is explained for rational Discrete STFT (DSTFT) is an adaptive 

generalization of the classical STFT and also uses rational functions to characterize epileptic seizure patterns in 

the time-frequency domain. To be as effective as possible, researchers looked at the best number of coefficients 

and window size to show that the Malmquist–Takenaka rational DSTFT can be used to find seizure patterns in 

EEGs. The paper (Ahmad et al., 2022) showed that the fundamental purpose is to predict seizures with high 

accuracy in an automated way successfully. It is explained that for the phase correlation, the cost function of 

fluctuation and deviation approaches are utilized to extract features, and the least square-SVM classifier and 

windowing regularization are employed to post-process. In their study, the researchers (Billeci et al., 2018) 

demonstrated that the adaptive hybrid feature selection-based classifier ensemble (AHFSE) method integrates 

numerous feature selections in order to acquire the best features that play essential roles in seizure detection and 

classification performance. 

The authors (Pearce et al., 2013) created a feature selection (FS)-based decision support system using neonatal 

EEG records with and without seizures. With the fewest attributes per channel difference, all FS algorithms 

performed best. All FS algorithms were tested on each EEG channel with the highest classification performance 

(98.8%). The suggested procedure employs the discrete wavelet transform (DWT) and orthogonal matching 

pursuit (OMP) methods to decompose single-channel EEG data into various coefficients. The complexity of 
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individual EEG sub-bands is then quantified by non-linear properties such as recurrence quantification analysis, 

alphabet, correct condition entropies, and others (Li et al., 2020).  In order to anticipate when an epileptic seizure 

would occur, researchers (Wang et al., 2013) examined the complexity of a superset of EEG-based markers 

typically used to make this distinction. In this classifier-agnostic study, complexity indicators, including the Fisher 

discriminant ratio and the amount of class overlap in feature space, were employed to determine each feature's 

discriminant power. 

This paper (Ibrahim et al., 2019) proposes a new model for EEG seizure identification using blocked texture 

features and a representation of time-frequency images in two dimensions (2D-TFI). The model employs STFT 

to increase the time-frequency representation (TFR) quality by transforming the one-dimensional EEG into a 

multi-dimensional matrix. In order to ensure the efficacy and practicality of this method, and explore eight actual 

clinical instances. These encouraging findings highlight the method's potential for further clinical development 

across various illnesses. Here, researchers (Karabiber Cura et al., 2020) introduce a unique approach to classifying 

epileptic EEG signals utilizing a multivariate feature classification algorithm based on the union of RF and CNN. 

The suggested model has perfect classification accuracy, sensitivity, specificity, and precision when extracting 

numerous characteristics from EEG data. The paper explains DNN model architecture and feature extraction. 

According to (Yuan et al., 2018), a deep learning neural network (DNN) model can automatically generate features 

for EEG signal analysis classification tasks. Abstractions can learn complicated operations from input information 

without manually creating features because the DNN model extracts various features from low to high layers. 

 

3. Problem Statement 

This study investigates the effectiveness of feature extraction algorithms combined with machine 

learning strategies to improve epileptic seizure detection from EEG signals, aiming to enhance diagnostic 

accuracy and facilitate tailored therapeutic interventions for individuals with epilepsy. 

 

4. Methodology 

The methodology used in this article is a six-step process, as shown in Figure 1. Here, the raw signal or 

EEG bio-signal labelled data, consisting of twenty-three (23) channels in the European Data Format (EDF), was 

first collected. This data is from CHB-MIT (Deepa B & Ramesh K, 2021). It then converted data to a comma-

separated value (CSV) format for each Subject one by one. After this, integrate all of the CSV file data into one 

file and mention the target values (0 and 1) as per labelled data for the subjects. It represents non-seizure (0) and 

seizure (1). It is processed and cleaned data with no missing values. Now, it is a continuation process to find the 

results from this processed dataset of size (5540608, 24). 

Different feature extraction techniques apply to the same dataset, as shown in Table 1. These algorithms can pick 

the relevant features for further processing. This step helps reduce the dimensions of the dataset. As a result, it 

 

Figure.1. Proposed Methodology for Relevant Feature Extraction 
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minimizes the computing cost and maximizes the machine learning model's performance to train classifiers. This 

table describes the various feature selection algorithms and proves the benefits of applying high dimensional data 

to reduce the features for training the classifiers for machine learning model/s.  

 

Table.1.  eature   traction Techniques  or Selecting Relevant  eatures  rom the  ataset 

 eature 

  traction 

Technique 

 escri tion Mathematical    ression 

Correlation-

Based Feature 

Selection 

(CBFS) 

Correlation-based feature 

selection filters feature subsets 

by their correlations with the 

target variable and each other. 

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐞  𝐉 = ∑ 𝐬𝐑(𝐢)

𝐦

�̇�=𝟏

− ∑ ∑ 𝐬𝐃(𝐢, �̇�)

𝐦

𝐉=𝐈

𝐦

𝐢=𝟏

 

Where SR i  is the relevance of feature i with the target 

variable and S  i,j  is the redundancy between features i 

and j. 

Information 

Gain Feature 

Selection 

(IGFS) 

In feature selection, 

Information Gain (IG) 

measures how much 

information a feature provides 

about the target variable. 

Decision trees and other 

classification techniques use 

it. 

 

𝐈𝐆(𝐗) = 𝐇(𝐘) − 𝐇(𝐘|𝐗)

𝐇(𝐘) = − ∑ 𝐏(𝐲𝐢) 𝐥𝐨𝐠𝟐(𝐏(𝐲𝐢))

𝐢

𝐇(𝐘|𝐗) = ∑ 𝐏(𝐱𝐣)𝐇(𝐘|𝐗 = 𝐱𝐣)

𝐣

 

Here, Information Gain IG X  of feature X with respect 

to the target variable Y, 

H Y  as the entropy of the target variable Y, and 

H Y∣X  as the conditional entropy of Y given a feature X. 

Where P yi  is the probability of class yi in the target 

variable Y and 

P  j  is the probability of observing value  j of feature X, 

and H Y∣X= j  is the entropy of Y given feature X takes 

the value  j. 

Recursive 

Feature 

Elimination 

(RFE) 

It iteratively removes features 

from the dataset, applies the 

model to the remaining 

features, and selects features 

based on their importance or 

contribution. The process 

continues until the selection of 

the desired number of 

features. Linear models, tree-

based models, or models with 

built-in feature selection 

methods that produce feature 

importance scores benefit 

from RFE. 

Model = FitModel(X,y) 

ImportanceScores = Φ(Model) 

X=RemoveFeature(X,LeastImportantFeature) 

 

Where X is the matrix of features with n samples and m 

features, each row represents a sample, and each column 

represents a feature. 

y as the vector of the target variable, and 

Φ as the feature importance function, which assigns a 

score to each feature based on its importance. 

L1 or Lasso 

Regularization 

Feature 

Selection 

(LRFS) 

It works well for feature 

selection and model 

regularization, balancing 

model complexity with 

predictive performance. 

Machine learning uses it to 

𝐋𝐨𝐬𝐬 = 𝐎𝐫𝐢𝐠𝐢𝐧𝐚𝐥 𝐋𝐨𝐬𝐬 +  𝛌 ∑ |𝛃𝐣|

𝐩

𝐣=𝟏

 

Where Original Loss is the loss function without 

regularization, it means mean-squared error for linear 

regression and logistic loss for logistic regression. 
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penalize the absolute 

magnitude of model 

coefficients in linear and 

logistic regression models. It 

improves feature selection by 

encouraging coefficient 

sparsity, decreasing some 

coefficients to zero and 

deleting related features from 

the model. 

λ is the regularization parameter, which controls the 

strength of regularization—higher values of λ lead to a 

more aggressive shrinking of coefficients. 

  is the number of features. 

βj are the coefficients associated with each feature. 

 𝛌 ∑ |𝛃𝐣|
𝐩
𝐣=𝟏  is the L1 regularization term. It is added to 

the original loss function and penalizes large coefficients 

by shrinking them towards zero. 

Random Forest 

Feature 

Selection 

(RFFS) 

It facilitates the analysis of 

training feature significance 

scores and can be used to 

select features. Each feature 

score decides its contribution 

to training impurity reduction. 

These scores can identify 

essential aspects of 

prospective modelling tasks. 

𝐅𝐈(𝐗𝐣) =  
𝐈𝐦𝐩(𝐗𝐣)

∑ 𝐈𝐦𝐩(𝐗𝐢)
𝐦
𝐢=𝟏

 

Where X is the matrix of features with n samples and m 

features, each row and column representing a sample and 

a feature, respectively, and y as the vector of the target 

variable. 

Here Im  Xj  represent the total impurity reduction 

achieved by splitting on feature Xj. 

The feature importance score  I Xj  for feature Xj is 

typically normalized to sum to 1 across all features. 

Principal 

Component 

Analysis 

(PCA) 

PCA is a sophisticated feature 

selection method that reduces 

features to a lower-

dimensional space while 

keeping key information. PCA 

selects a collection of main 

components to choose features 

based on data variance. 

∑ = 𝐐𝚲𝐐𝐓 

Where X be the original feature matrix with n samples 

and m features. 

Q is an m×m matrix whose columns are the eigenvectors 

of Σ. 

Λ is a diagonal matrix containing the eigenvalues of Σ. 

PCA selects the first k principal components 

corresponding to the largest eigenvalues to retain the most 

significant variance in the data. 

Independent 

Component 

Analysis 

(ICA) 

Dimensionality reduction 

method Independent 

Component Analysis (ICA) 

splits multidimensional 

signals into additive, 

statistically independent 

components. ICA is 

commonly utilised for blind 

source separation and signal 

processing, but it can choose 

features. 

𝐗 = 𝐀𝐒 

Where X be the original feature matrix with n samples 

and m features. 

A is n×m mixing matrix that represents the linear mixing 

process. 

S is m×n matrix of source components. 

The observed data X is represented as a linear mixture of 

m independent source components S, here each sample  i 

in X is a linear combination of the sources. 

5. Results and  iscussion 

By following the methodology steps in extracting the results to prove this research. After completing the 

practical in Python programming using Jupyter Notebook on Anaconda Framework. These are the following 

results in Table 2. 

 

 

 

Table.2. Selected Relevant  eatures by using  eature   traction Techniques on the  ataset 
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 eature 

  traction 

Technique 

Total Number o  

Channels  or 

 eatures  

Com onent 

 k  
Selected Relevant  eatures 

Correlation-

Based Feature 

Selection 

(CBFS) 

'# FP1-F7', 'F7-

T7', 'T7-P7', 'P7-

O1', 'FP1-F3', 

'F3-C3', 'C3-P3', 

'P3-O1', 'FZ-CZ', 

'CZ-PZ', 'FP2-

F4', 'F4-C4', 'C4-

P4', 'P4-O2', 

'FP2-F8', 'F8-T8', 

'T8-P8-0', 'P8-

O2', 'P7-T7', 'T7-

FT9', 'FT9-FT10', 

'FT10-T8', 'T8-

P8-1' 

k = 5 
'T7-P7', 'FZ-CZ', 'T8-P8-0', 'P7-T7', 

'T8-P8-1' 

k = 10 
'F7-T7', 'C3-P3', 'F4-C4', 'C4-P4', 'FP2-F8', 'T8-

P8-0', 'T7-FT9', 'FT9-FT10', 'FT10-T8', 'T8-P8-1' 

k =15 

'F7-T7', 'P7-O1', 'FP1-F3', 'F3-C3', 'C3-P3', 'FZ-

CZ', 'CZ-PZ', 'F4-C4', 'C4-P4', 'FP2-F8', 'T8-P8-

0', 'T7-FT9', 'FT9-FT10', 'FT10-T8', 'T8-P8-1' 

Information Gain 

Feature Selection 

(IGFS) 

k = 5 'T7-P7', 'P7-T7', 'P7-O1', 'F7-T7', 'F3-C3' 

Recursive 

Feature 

Elimination 

(RFE) 

k = 5 'F7-T7', 'P7-O1', 'F3-C3', 'P7-T7', 'FT9-FT10' 

L1 or Lasso 

Regularization 

Feature Selection 

(LRFS) 

NIL [ ] 

Random Forest 

Feature Selection 

(RFFS) 

k = 5 'P7-T7', 'T7-P7', 'F7-T7', 'P7-O1', 'FT9-FT10' 

Principal 

Component 

Analysis 

(PCA) 

k = 10 
'PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 

'PC9', 'PC10', 'result' 

Independent 

Component 

Analysis 

(ICA) 

k = 10 
'IC1', 'IC2', 'IC3', 'IC4', 'IC5', 'IC6', 'IC7', 'IC8', 

'IC9', 'IC10' 

 

The table outlines various feature extraction techniques, the total number of channels or features, the number of 

components (k) selected, and the chosen features for each method. In CBFS, different values of k result in selecting 

specific channels deemed most relevant for seizure prediction. IGFS prioritizes features based on information 

gain, with selected channels like T7-P7 and P7-O1 considered crucial. RFE identifies important features 

iteratively, with prominent channels such as F7-T7 and P7-O1 emerging as significant. L1 or LRFS, Random 

Forest (RF) feature selection, and PCA each offer distinct approaches to feature selection, with selected features 

tailored to optimize predictive performance. ICA identifies independent components contributing to the overall 

data, highlighting components like IC1 and IC2 as influential. Each technique offers unique insights into feature 

importance, aiding in developing effective seizure prediction models tailored to EEG data. 
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It is describing the important features from twenty-three channels to further processing steps. It is shown in Figure 

2. In predicting seizures from EEG channels, it's crucial to visualize the essential features along with their 

corresponding importance scores to gain insights into their predictive power. Among the provided EEG channels, 

T7-P7 emerges as the most crucial feature, with a score of 59.66, suggesting its pivotal role in seizure prediction. 

The closely followed channels are FT9-FT10 and P7-T7, with high importance scores of 58.55 and 58.49, 

respectively, highlighting their significant contributions to the predictive model. Additionally, features such as P7-

O1, F3-C3, and F7-T7 exhibit moderately high importance scores ranging from 53.56 to 56.43, indicating their 

relevance in seizure prediction. While C4-P4 and C3-P3 have comparatively lower importance scores of 46.81 

and 44.77, they still offer valuable insights into seizure prediction. Visualizing these essential features and their 

respective importance scores provides a comprehensive understanding of the relative importance of EEG channels 

 

Figure.2. Visualization of Important Features with each Feature Importance Score 
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in predicting seizures, enabling researchers and clinicians to prioritize specific channels for further investigation 

and intervention strategies. 

This research focuses on the relationship between various features. It also explains the impact of their correlation 

for further studies in predicting epileptic seizures from EEG data. See Figure 3, checking correlation in the data 

is a crucial step in data analysis as it helps to identify relationships between different variables. Examining the 

correlation coefficients can filter out unnecessary columns, as lower correlation values indicate lower attribute 

importance. 

When the correlation coefficient is close to +1, it indicates a strong positive correlation between the variables. It 

means that the variables tend to vary in the same direction simultaneously, i.e., as one variable increases, the other 

variable also tends to increase. Conversely, when the correlation coefficient is close to -1, it signifies a robust 

negative correlation between the variables. In this scenario, the variables tend to vary in the opposite direction 

simultaneously, i.e., as one variable increases, the other variable tends to decrease. A correlation coefficient close 

 

Figure.3. Representation of Correlated Features 
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to 0 indicates little to no linear relationship between the variables. It suggests that the variables are not correlated 

and do not exhibit a consistent pattern of variation together. 

Table.3. Per ormance Metric by using Machine Learning Techniques on Selected Relevant  eatures  rom 

the  ataset 

Machine 

Learning 

Techniques 

Accuracy Precision Recall  1-Score MCC 

 T 0.656928 0.651683 0.656256 0.653961 0.313821 

R  0.754061 0.807816 0.658879 0.725786 0.515636 

NB 0.659340 0.791453 0.421422 0.549992 0.355454 

KNN 0.757772 0.790543 0.693346 0.738761 0.518617 

XGBoost 0.716184 0.760047 0.621740 0.683972 0.438228 

From Table 3, it is an empirical performance analysis of various machine learning models evaluation after 

selecting ten features (F7-T7, C3-P3, F4-C4, C4-P4, FP2-F8, T8-P8-0, T7-FT9, FT9-FT10, FT10-T8, T8-P8-1) 

from an initial set of twenty-three features. Decision Tree (DT) achieved an accuracy of approximately 65.69% 

with precision, recall, and F1-score around 65.17%, 65.63%, and 65.40%, respectively, along with an MCC of 

31.38%. Random Forest (RF) outperformed DT, achieving an accuracy of approximately 75.41% with higher 

precision (80.78%), recall (65.89%), and F1-score (72.58%), as well as a higher MCC of 51.56%. Naive Bayes 

(NB) demonstrated an accuracy of approximately 65.93% with precision and F1-score around 79.15% and 

55.00%, respectively, while its recall and MCC were comparatively lower at 42.14% and 35.55%. K-Nearest 

Neighbors (KNN) showed promising results with an accuracy of approximately 75.78% and relatively high 

precision (79.05%) and recall (69.33%), achieving an F1-score of 73.88% and an MCC of 51.86%. XGBoost 

achieved an accuracy of approximately 71.62% with precision, recall, and F1-score of roughly 76.00%, 62.17%, 

and 68.40%, respectively, and an MCC of 43.82%. Overall, Random Forest and K-Nearest Neighbors 

demonstrated the highest performance among the models, followed by XGBoost, Decision Tree, and Naive Bayes, 

underscoring the importance of feature selection in enhancing model performance and efficiency. 

 

6. Conclusion 

In conclusion, the table illustrates various feature extraction techniques employed in predicting seizures from EEG 

channels. Each method, including Correlation-Based Feature Selection (CBFS), Information Gain Feature 

Selection (IGFS), Recursive Feature Elimination (RFE), L1 or Lasso Regularization Feature Selection (LRFS), 

Random Forest (RF) feature selection, Principal Component Analysis (PCA), and Independent Component 

Analysis (ICA), offers unique insights into the importance of features extracted from the initial set of twenty-three 

channels. Notably, different values of k in CBFS, information gain in IGFS, and iterative selection in RFE 

highlight specific channels crucial for seizure prediction, such as T7-P7 and P7-O1. Visualization of these essential 

features, as demonstrated in Figure 2 and their importance scores, underscores the pivotal role of channels like 

T7-P7 and FT9-FT10 in predictive modeling. Furthermore, moderately high importance scores of channels like 

P7-O1, F3-C3, and F7-T7 emphasize their relevance in seizure prediction. Even channels with comparatively 

lower importance scores, such as C4-P4 and C3-P3, contribute valuable insights. This research delves into the 

intricate relationship between various features and elucidates the profound impact of their correlation in predicting 

epileptic seizures from EEG data. As illustrated in Figure 3, the examination of correlation coefficients emerges 

as a crucial step in data analysis, identifying relationships between different variables and facilitating the filtration 

of unnecessary columns. A correlation coefficient close to +1 signifies a strong positive correlation, while a value 

near -1 indicates a robust negative correlation between variables. Conversely, a correlation coefficient close to 0 

suggests little to no linear relationship.  

Furthermore, empirical performance analysis, as presented in Table 3, highlights the efficacy of various machine 

learning models after selecting essential features from an initial set of twenty-three. Notably, Random Forest and 

K-Nearest Neighbors exhibit superior performance, emphasizing the significance of feature selection in 

optimizing model performance. Overall, visualizing essential features and their importance scores facilitates a 

comprehensive understanding of the importance of EEG channels in seizure prediction, guiding researchers and 



NATURALISTA CAMPANO 

ISSN: 1827-7160 

Volume 28 Issue 1, 2024 

 

 

________________________________________________________________ 

1345 

 

 
https://museonaturalistico.it 

clinicians in prioritizing specific channels for further investigation and intervention strategies. These findings 

underscore the importance of meticulously examining feature relationships and selecting pertinent features for 

accurate seizure prediction, ultimately enhancing the efficiency and efficacy of predictive modeling in EEG data 

analysis. 
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