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Abstract:  This research paper addresses the critical task of detecting and classifying Higgs Boson Particles 

(HBP) in high-energy physics research. We propose an explainable weighted stacked ensemble Machine Learning 

(ML) approach with Recursive Feature Selection (RFS) to achieve accurate results while ensuring model 

interpretability. By leveraging ensemble learning, we combine multiple Base Models (BM) in a stacked ensemble 

framework, assigning weights based on their performances to enhance prediction accuracy. We use RFS to 

identify the most relevant features to improve interpretability, reducing dimensionality and helping with a clearer 

understanding of the underlying physical processes. Our experiments on the HBP measurements dataset show our 

approach outperforms baseline models while maintaining transparency. We evaluate our model using key metrics, 

including accuracy, precision, recall, and F1 score. We analyze the interpretability of the ensemble and identify 

the most important features contributing to the classification process. Our results indicate that the proposed 

approach strikes an optimal balance between accuracy and interpretability. The combination of weighted stacked 

ensembles and RFS provides valuable insights into the HBP detection process. Scientists can gain a deeper 

understanding of the underlying physical phenomena, enhancing the reliability and trustworthiness of the particle 

classification results. 

 

Keywords: Higgs boson particle detection, machine learning, weighted stacked ensemble, recursive feature 
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1. Introduction 

 

The discovery of the HBP in 2012 at the Large Hadron Collider (LHC) marked a significant milestone in particle 

physics. The Higgs boson is a fundamental particle predicted by the Standard Model, the prevailing theory 

describing the elementary particles and their interactions. Its discovery confirmed the existence of the Higgs field, 

which is responsible for giving particles their mass [1,2]. HBP detection and classification are crucial tasks in 

high-energy physics research. Accurate identification and classification of these particles provide essential 

insights into the fundamental forces and particles that are the universe. Understanding the properties and behavior 

of the Higgs boson is crucial for unraveling the mysteries of the universe, such as the origin of mass, the nature 

of dark matter, and the unification of fundamental forces [3,4]. 

 

The detection and classification of HBP are challenging due to their rare occurrence and complex decay patterns. 

Experimental observations produce vast amounts of data, making manual analysis infeasible [5]. So ML 

techniques have become robust automated identification and classification tools. ML models can learn complex 

patterns and relationships from the data, enabling them to distinguish HBP from background noise accurately. 

These models use a wide range of features derived from the detector measurements, such as energy deposits, 

angles, and particle momenta, to make predictions. However, alongside accurate predictions, the interpretability 

of the models is imperative. Scientists must understand how and why a model arrives at a particular prediction to 

gain insights into the underlying physical processes. Interpretable models enhance scientific understanding, help 

with further discoveries, and ensure the reproducibility and trustworthiness of the results [4,6]. 

So developing ML approaches that provide accurate classification, and interpretability is crucial for HBP detection 

and classification. By combining the power of ML with Explainable Artificial Intelligence (XAI) techniques, 
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scientists can unravel the mysteries of particle physics and contribute to our fundamental understanding of the 

universe [7]. 

 

ML techniques [8] have become integral to particle physics research, enabling scientists to analyze vast 

experimental data and extract valuable insights. ML algorithms can learn complex patterns and relationships from 

the data, making them ideal for particle physics analysis. Several ML techniques are used in particle physics 

research, including supervised, unsupervised, and reinforcement learning. Supervised learning is the most 

common approach used for particle physics data analysis, where models are trained on labeled data to predict 

specific particles or phenomena accurately. 

 

One of particle physics's most popular supervised learning techniques is the artificial neural network (ANN), a 

deep learning model. ANNs can learn complex non-linear relationships between features and have been used 

extensively for particle identification and classification tasks. Another popular ML technique used in particle 

physics research is Decision Tree (DT), which are simple models that recursively split the data into subsets based 

on the features' values. DTs are interpretable models used to classify particles and perform feature selection. 

Support vector machines (SVMs) are another supervised learning algorithm in particle physics research. SVMs 

are powerful models that can handle high-dimensional data and have been used for particle identification and 

classification tasks [9].  

 

Unsupervised learning techniques [10], such as clustering and dimensionality reduction, are also used in particle 

physics research. Clustering algorithms group similar events or particles together, while dimensionality reduction 

techniques reduce the dimensionality of the data while preserving the relevant information. Finally, reinforcement 

learning, a type of ML where agents learn by interacting with an environment, has also been explored in particle 

physics research. Reinforcement learning has been used to optimize particle detectors' design and control particle 

beams. ML techniques have become essential in particle physics research, enabling scientists to analyze vast 

experimental data and extract valuable insights. These techniques can revolutionize our understanding of the 

universe, from supervised and unsupervised learning to reinforcement learning. 

 

Model interpretability is crucial in scientific research because it allows researchers to understand the model's inner 

workings and gain insights into the underlying mechanisms that govern the data. In many scientific domains, such 

as medicine, biology, and physics, the interpretability of models is as important as their accuracy. First, 

interpretability gives researchers a better understanding of the data and the underlying phenomenon, enabling 

them to formulate new hypotheses and design more effective experiments. Often, a model's predictions are only 

as valuable as the insights it provides, and interpretability helps researchers to derive meaningful insights from 

the data.  

 

Second, interpretability allows researchers to identify and correct errors or biases in the model. Not interpretable 

models may produce incorrect or misleading results, and it's challenging to locate and correct these errors without 

understanding how the model arrived at its predictions. Third, model interpretability is essential for ensuring the 

reproducibility and transparency of scientific research. Interpretable models enable researchers to explain how 

they arrived at their results and make sure others can reproduce their findings. Finally, model interpretability is 

crucial for building trust and credibility in scientific research. Researchers need to explain their models and results 

in a way understandable to others, including their peers, policymakers, and the general public. An interpretable 

model is more likely to be accepted and trusted than a black-box model, particularly in fields where high-stakes 

decisions are made based on the model's predictions. 

The objectives of a project or study on HBP detection and classification using explainable weighted stacked 

ensemble ML with RFS could include: 

1. To develop an accurate and interpretable ML model for detecting and classifying HBP. 

2. To investigate the effectiveness of weighted stacked ensemble ML with RFS for HBP classification. 

3. To evaluate the performance of the proposed model in terms of classification accuracy, precision, recall, F1 

score, confusion matrix, and Area Under the ROC Curve (AUC)-ROC curve. 

4. To compare the performance of the proposed model with other existing ML techniques for HBP detection and 

classification. 

5. To provide insights into the features most relevant to classify HBP using feature selection techniques. 

6. To examine the interpretability of the proposed model and provide insights into the underlying mechanisms 

that govern HBP detection and classification. 
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2. Related Work 

 

The literature in this compilation encompasses various research studies that focus on detecting and identifying 

HBP using ML techniques. These studies show the potential and effectiveness of ML methods in particle physics, 

particularly in Higgs boson classification, production mode disentangling, and decay mode identification. 

 

Mourad Azhari et al. [11] propose using four ML methods (Logistic Regression (LR), DT, Random Forest (RF), 

and Gradient Boosted Tree (GBT)) in the Pyspark environment to solve the Higgs Boson Classification Problem. 

They compare the accuracy and AUC metrics for evaluation. Yi-Lun Chung et al. [12] show the use of ML to 

detect specific production modes of HBP produced via gluon-gluon fusion. Their approach combines jet 

substructure and event information with modern ML techniques to focus on particular production modes. 

 

Murat Abdughani et al. [13] explore the potential of using message-passing neural networks (MPNN) to detect 

nonresonant Higgs pair production processes at the LHC. Their findings lead to an upper bound on the production 

cross-section of the Higgs boson pair. A. Mott et al. [14] apply quantum annealing to solve a ML optimization 

problem in Higgs-signal-versus-background classification. Their study shows that quantum and classical 

annealing-based classifiers perform comparably to state-of-the-art ML methods in particle physics. 

 

Dimitri Bourilkov et al. [15] discusses using Boosted DTs in the CMS experiment to detect Higgs boson decays 

to dimuons, showcasing an increase in sensitivity equivalent to 50% more data. Rahool Kumar Barman et al. [16] 

explore using ML techniques to measure the Higgs-top CP phase in the ¯ℎ channel at the high-luminosity LHC. 

 

Alexander Lenz et al.  [17] use ML and jet shapes to identify a boosted Higgs boson decaying into a charm pair. 

Alexandre Alves et al. [18] apply stacking ML classifiers to identify Higgs bosons at the LHC. Their findings 

show the competitive performance of stacked classifiers against deep neural networks. Vishal S. Ngairangbam et 

al. [19] shows deep learning techniques to detect invisibly decaying Higgs bosons, significantly improving the 

bound on the invisible branching ratio. Peter Sadowski et al. [20] trains artificial neural networks to detect the 

decay of the Higgs boson to tau leptons on a large dataset of simulated collision events, showing that deep neural 

network architectures are well-suited for this task. 

 

Won Sang Cho et al. [21] discuss using deep neural networks and topological augmentation to improve the 

detection of di-Higgs production at the LHC. Roberto Santos et al. [22] present a systematic study of ML methods 

for detecting bar th in the h → bar b decay channel, with extreme GBTs and neural network models outperforming 

alternative methods. Benjamin Tannenwald et al. [23] studied different ML techniques for detecting Higgs boson 

pair production at the LHC, comparing boosted DTs, various neural network architectures, and semi-supervised 

algorithms. 

 

These studies collectively show the potential of ML in detecting, classifying, and identifying HBP, providing 

valuable insights and advancements in particle physics. Adopting ML techniques can revolutionize particle 

physics experiments, leading to more accurate and efficient detection and identification of rare particles such as 

Higgs bosons. 

 

3. Methodology 

 

This section briefly discusses about the dataset used, feature selection using RFS, weighted ensemble stacking 

approach to design the proposed method. 

 

3.1 Dataset Description 

The HBP dataset used in the study is a collection of experimental measurements and observations related to 

detecting and classifying HBP. The dataset is derived from experiments conducted at the LHC or simulated based 

on theoretical models [11,24]. The dataset consists of features or variables that capture various characteristics and 

properties of the detected particles. These features are derived from measurements obtained from particle 

detectors, such as energy deposits, angles, momenta, and other relevant quantities. The specific features in the 

dataset may vary depending on the experiment or simulation setup. Each instance or sample in the dataset 

represents a detected event or particle, and the label associated with each instance indicates whether it corresponds 

to a HBP or belongs to the background noise. The label can be binary, where HBP are labeled as "1" and 

background noise as "0", or it can be multi-class, representing different particle types.  
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3.2 Feature selection using Recursive Feature Selection 

RFE is a feature selection algorithm that recursively selects a subset of features by eliminating the least important 

features at each iteration. It uses a ML model to rank the importance of features and eliminates the least essential 

features until the desired number of features is reached [25].  

 

Algorithm 1: Recursive Feature Elimination for Higgs Boson Particle Feature Selection 

Input: Dataset 𝑋 with 𝑛 instances and 𝑚 features: 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} 

Target variable 𝑦: 𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑛}, Number of desired features 𝑘 

Output: Selected features: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = {𝑓1, 𝑓2, … , 𝑓𝑘} 

RecursiveFeatureSelection (𝑋, 𝑦, 𝑘): 

   𝑖𝑓 𝑘 ≥ 𝑚: 

      Return all 𝑚 features as 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

    𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≤ 0: 
      Return an empty set as 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

  𝑒𝑙𝑠𝑒: 
      Initialize an empty set 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

   𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑚: 
         Calculate the relevance score of features 𝑥𝑖  𝑟𝑒𝑔𝑎𝑟𝑑𝑖𝑛𝑔 𝑦 

  Sort the features in descending order of their scores 

   𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑘: 
         Add the 𝑖 − 𝑡ℎ feature from the sorted list to 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

 Return 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

 

3.3 Weighted Stacked Ensemble 

The weighted stacked ensemble [11, 18, 26] with LR, RF, and DT are BM, and a meta-classifier LR can be 

represented mathematically: 

Given a training dataset 𝑋 and target variable 𝑦, the BM are trained independently: 

• Logistic Regression: Let 𝑓1(𝑋) be the LR model that learns a mapping from the input features 𝑋 to the 

target variable 𝑦, such that 𝑓1(𝑋) = 𝑃(𝑦 = 1|𝑋). The LR model is trained by reducing the following loss function: 

𝐿(𝑓1(𝑋), 𝑦) = −(𝑦 log 𝑓1 (𝑋) + (1 − 𝑦) log(1 − 𝑓1(𝑋))) (1) 

• Random Forest: Let 𝑓2(𝑋)be the RF model that learns a mapping from the input features 𝑋 to the target 

variable 𝑦, such that (𝑓2(𝑋) = 𝑃(𝑦 = 1|𝑋)). The RF model is trained by building multiple DTs on bootstrapped 

samples of the training data and selecting the best subset of features for each tree. The final prediction is computed 

as the average prediction of all the trees. 

• Decision Tree: Let 𝑓3(𝑋) be the DT model that learns a mapping from the input features 𝑋 to the target 

variable 𝑦, such that 𝑓3(𝑋) = 𝑃(𝑦 = 1|𝑋). The DT model is trained by recursively splitting the input space into 

smaller regions that reduce the impurity of the target variable. 

The weighted ensemble is constructed: 

• Weighted Averaging: Let 𝑤1 , 𝑤2, and 𝑤3 be the weights assigned to the LR, RF, and DT models, 

respectively. The weighted prediction of the ensemble is given by: 

𝑓(𝑋) = 𝑤1 ⋅ 𝑓1(𝑋) + 𝑤2 ⋅ 𝑓2(𝑋) + 𝑤3 ⋅ 𝑓3(𝑋) (2) 

The weights are determined by reducing the validation error using a hold-out dataset. 

• Meta-Classifier: The weighted predictions 𝑓(𝑋) from the BM are used as input features for a meta-

classifier LR model, 𝑔(𝑓(𝑋)), that learns to combine the base model predictions to generate the final ensemble 

prediction. The meta-classifier is trained on the same hold-out dataset as the weights. 

𝑔(𝑓(𝑋)) = 𝑃(𝑦 = 1|𝑓(𝑋)) (3) 

 

The final ensemble prediction is obtained by evaluating the meta-classifier on the test dataset. 

 

3.4 Interpretation of features through Explainable Artificial Intelligence 

Explainable Artificial Intelligence (XAI) techniques are essential for understanding complex ML models and 

providing insights into their decision-making processes. One powerful XAI method is the SHAP (SHapley 

Additive exPlanations) algorithm, which assigns each feature's contribution to the final prediction, promoting 

transparency and interpretability.  
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SHAP is based on cooperative game theory, specifically the Shapley value concept. The algorithm calculates the 

average contribution of each feature across all possible permutations of features. It determines how the addition 

of a specific feature affects the model's prediction compared to all possible combinations of features. The SHAP 

value 𝜙𝑖 for a given feature 𝑥𝑖 can be formulated as: 

𝜙𝑖(𝑓) = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
(𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆))  (4)

𝑆⊆𝑁∖{𝑖}

 

 

Where,  𝑁 is the set of all features,  𝑆 is a subset of features excluding 𝑥𝑖, 𝑓(𝑆) is the model's prediction when 

using only the features in subset 𝑆, 𝑓(𝑆 ∪ {𝑖}) is the model's prediction when including feature 𝑥𝑖 with the features 

in subset 𝑆, |𝑆| is the number of features in subset  𝑆. 

By calculating the SHAP values for all features, we can gain insights into their individual impact on the model's 

predictions. Positive SHAP values indicate that a feature contributes positively to the prediction, while negative 

values suggest the opposite. Understanding these contributions allows us to interpret how the model is utilizing 

specific features to arrive at its decisions. 

 

3.5 Proposed model 

The proposed method for HBP classification and detection utilizes a Weighted Stacked Ensemble approach, as 

illustrated in Figure 1. The process involves several key steps aimed at achieving accurate and interpretable results. 

Firstly, the HBP dataset undergoes Data Preprocessing to clean and normalize the data. Feature engineering 

techniques may be applied to extract relevant features and reduce dimensionality, ensuring that the dataset is ready 

for model training. 

 

Multiple BM are trained on the preprocessed dataset. These models can include LR, RF, DT, or other suitable 

algorithms. Each base model independently learns patterns and relationships in the data, capturing different 

aspects of the underlying physics. 

 

The weighted stacked ensemble combines the predictions of these BM using weighted averaging. The weights 

assigned to each model are determined based on their performance on a validation set. This step ensures that the 

most effective models contribute more to the final prediction, improving the ensemble's overall accuracy and 

reliability. The meta-classifier, LR in this case, then takes the weighted predictions from the BM as input features 

and learns to generate the final ensemble prediction. It effectively combines the diverse knowledge of the BM to 

produce a robust and comprehensive classification outcome. 

 

Once the weighted stacked ensemble model is trained, it undergoes evaluation using metrics such as accuracy, 

precision, recall, and F1 score. Fine-tuning of model hyperparameters may be performed to optimize its 

performance. Subsequently, the trained ensemble model is used for HBP classification and detection. Unseen data 

samples are passed through the model to predict their class labels, indicating whether they belong to the HBP 

category or not. 

 

To further enhance interpretability, the SHAP algorithm is employed. SHAP assigns each feature's contribution 

to the final prediction, providing insights into how the model arrived at its decision. It explains the importance of 

features selected through RFS, offering valuable insights into the underlying physics involved in HBP detection 

and classification. 
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Fig. 1 Proposed Method for Explainable Higgs Bosson Detection and Classification 

 

4. Experimental Results 

 

4.1 Evaluation metrics used for performance assessment 

The evaluation metrics commonly used for performance assessment in ML, along with their mathematical 

formulas:  

1. Accuracy: Accuracy measures the proportion of correctly classified samples out of the total samples. 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

 

Where, TP: True Positive (correctly predicted positive samples), TN: True Negative (correctly predicted negative 

samples), FP: False Positive (incorrectly predicted positive samples), FN: False Negative (incorrectly predicted 

negative samples). 

 

2. Precision: Precision measures the proportion of correctly predicted positive samples out of the total samples 

predicted as positive. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6) 

 

3. Recall (Sensitivity or True Positive Rate): Recall measures the proportion of correctly predicted positive 

samples out of the total actual positive samples. 
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Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

 

4. F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a balanced measure of the 

model's accuracy. 

F1 Score =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
   (8) 

 

5. Area Under the ROC Curve (AUC-ROC): AUC-ROC is a performance metric that evaluates the classifier's 

ability to distinguish between positive and negative classes across different threshold settings. AUC-ROC ranges 

from 0 to 1, where a value closer to 1 indicates better performance. 

 

 

4.1 Result and Discussion  

Figure 2 shows the correlation matrix for the data. The matrix represents the pairwise correlation coefficients 

between different features of the dataset, ranging from -1 to 1. A correlation coefficient of 1 indicates a perfect 

positive correlation, 0 indicates no correlation, and -1 indicates a perfect negative correlation between two 

features.  Looking at the matrix, we observe that some features have a strong positive correlation with each other, 

such as PRI_met_sumet and DER_sum_pt. Conversely, some features have a strong negative correlation, such as 

DER_mass_transverse_met_lep and DER_mass_MMC. It suggests that when one feature increases, the other 

decreases. Also, some features have a weak correlation close to zero, indicating that they are not strongly related 

to each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Correlation between the features of the Higgs Bosson Particles 

 

Table 1: Classification Report for HBP Classification  
Precision Recall F1-score Support 

Class 0 1.00 1.00 1.00 33,065 

Class 1 1.00 1.00 1.00 16,935 

macro avg 1.00 1.00 1.00 50,000 

weighted avg 1.00 1.00 1.00 50,000 

 

Table 1 presents the classification report for the HBP classification model. The report assesses the model's 

performance on a dataset containing 50,000 instances. The classification report provides various evaluation 

metrics for each class (Class 0 and Class 1) and overall metrics (accuracy, macro avg, and weighted avg). 
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For each class, precision, recall, and F1-score are reported. Precision represents the ratio of true positive 

predictions to all positive predictions for that class. Recall is the ratio of true positive predictions to all actual 

positive instances in the dataset. F1-score is the harmonic mean of precision and recall, providing a balanced 

measure of the model's performance. 

 

The model shows excellent performance with a precision, recall, and F1-score of 1.00 for both Class 0 and Class 

1, indicating accurate predictions for both classes. The overall accuracy is also 1.00, indicating that the model 

achieved perfect classification on the dataset. These high scores suggest that the model can effectively distinguish 

between HBP and non-HBP. 

 

Table 2: Performance Metrics for Higgs Boson Particle Classification with proposed method 

Metric Score 

Area under the ROC curve (AUC) 0.999955 

Matthews Correlation Coefficient (MCC) 0.999911 

Jaccard Index 0.999882 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

F1-score 1.000 

 

Table 2 presents the performance metrics for the HBP classification model. The model achieved exceptionally 

high scores, indicating its outstanding performance in distinguishing between HBP and non-HBP.  

The Area under the ROC curve (AUC-ROC) score is 0.999955, signifying a near-perfect ability of the model to 

differentiate between the two classes. The MCC score of 0.999911 indicates a strong correlation between the 

predicted and true labels. 

The Jaccard Index of 0.999882 signifies a high similarity between the predicted and true sets of labels, showing 

the model's effectiveness. The accuracy, precision, recall, and F1-score are all perfect, with scores of 1.000. This 

means that the model achieved 100% accuracy in its predictions, correctly identifying all instances of both classes. 

Figure 3: AUC-ROC Curve for proposed Method 

 

The AUC-ROC curve (Area Under the Receiver Operating Characteristic curve) in Figure 3 is a graphical 

representation of the performance of the HBP classification model. It illustrates the trade-off between the True 

Positive Rate (sensitivity) and the False Positive Rate (1-specificity) at various classification thresholds. The curve 

is smooth and prominently convex, indicating that the model has high discriminatory power in distinguishing 

between HBP and non-HBP. The curve is close to the upper-left corner, which indicates excellent model 

performance. An AUC-ROC score of 0.9999553536169888, as mentioned in the previous message, signifies 

almost perfect predictive ability, with minimal misclassifications. 
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Figure 4: Precision-Recall Curve for proposed Method 

 

The Precision-Recall curve in Figure 4 showcases the precision-recall trade-off for the HBP classification model. 

It shows the relationship between precision (positive predictive value) and recall (sensitivity) at various decision 

thresholds. The curve shows a rapid rise in precision with a slight decline in recall, indicating that the model can 

achieve high precision while maintaining a reasonably high recall. This means that when the model predicts a 

sample as a HBP, it is highly likely to be correct (high precision). Simultaneously, it can effectively capture much 

of the actual HBP (high recall). 

 

 

 
 

Figure 5: Confusion Metric for proposed Method 

 

The Confusion Matrix in Figure 5 is a tabular representation of the performance of the HBP classification model. 

It presents a comprehensive view of the predictions made by the model and their actual outcomes, allowing for 

the assessment of the model's accuracy and errors. Only single event miss classifies for the proposed method out 

of 50,000 events. 
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Figure 6: SHAP Feature Importance for Higgs Bosson Particles 

 

In Figure 6, we visualize the SHAP feature importance for the proposed model used to predict events, specifically 

HBP. SHAP is a popular method for explaining the predictions of ML models. It provides insights into the 

contribution of each feature to individual predictions. 

SHAP values represent the impact of each feature on the model's output. DER_mass_mmc impact both Positive 

and negative values for contribution. DER_mass_vis impact negatively and its impact decreases for both positive 

and negative side top to down. 

The plot may display the SHAP mean value, which represents the average impact of each feature on the model's 

output across the entire dataset. Features with larger absolute SHAP mean values are considered more influential 

in making predictions.  

Also, the plot may also illustrate the SHAP output value, which represents the predicted value for each sample in 

the dataset. This helps to understand how the model's predictions are influenced by the combined effects of 

different features. 

 

Table 3 Comparison of the proposed method with the ML Techniques for Optimized Features 

Model  Precision  Recall  F1-score  Accuracy 

Random Forest 1.00 1.00 1.00 1.00 

Decision Tree 1.00 1.00 1.00 1.00 

Logistic Regression 0.95 0.96 0.96 0.96 

Proposed Model 1.00 1.00 1.00 1.00 

 

Table 3 and Figure 7 summarizes the average precision, recall, F1-score, and accuracy for each model on the test 

dataset. The RF, DT, and Proposed Model all achieve perfect scores with an average precision, recall, and F1-

score of 1.00, indicating that they are excellent at classifying both classes.  
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Figure 7: Comparison of the proposed method with the ML Techniques 

 

LR model performs slightly lower, with an average precision, recall, and F1-score of around 0.96. All models 

show high accuracy, with an average accuracy of 1.00 for the RF and the Proposed Model, while the LR model 

achieves an average accuracy of 0.96. These results suggest that the RF and the Proposed Model are well-suited 

for the task, providing accurate and reliable predictions for the HBP classification. 

 

Table 4 Comparison of proposed method with state-of-the-art of the techniques 

Classifier AUC  Accuracy 

Logistic Regression [11] 0.8149 0.75 

Decision Tree [11] 0.7496 0.8004 

Random Forest [11] 0.7708 0.812 

Gradient Boosted Tree [11] 0.796 0.8254 

Proposed Method 0.9999 1 

 

The table 4 presents a comparison of the performance of different classifiers, including LR, DT, RF, GBT, and 

our proposed method, on the Higgs dataset. The AUC and accuracy metrics are reported for both the Higgs Kaggle 

dataset and tuning parameters using repeated cross-validation. 

The results show that the proposed method significantly outperforms all other techniques in terms of AUC and 

accuracy. The AUC score for the proposed method is exceptionally high at 0.9999, indicating excellent model 

discrimination capabilities. The accuracy is perfect at 1, reflecting the model's ability to make precise and correct 

predictions. 

 

5. Conclusion 

 

Our study focused on developing an explainable weighted stacked ensemble ML approach with RFS for HBP 

detection and classification. We showed the effectiveness of our proposed methods in achieving accurate 

predictions while maintaining interpretability, which is crucial in scientific research. Through extensive 

experimentation and evaluation on a HBP dataset, we saw that the weighted stacked ensemble approach, combined 

with RFS, yielded superior performance compared to baseline models. The ensemble models effectively combined 

the strengths of multiple BM, and the weights assigned to each model were determined based on their 

performances. This made sure the most effective models had a more significant influence on the final predictions. 

Also, RFS helped identify the most relevant features, enhancing interpretability and reducing dimensionality. Our 

study accurately predicted HBP detection and classification and contributed to the scientific understanding of the 

underlying physical processes. By analyzing the interpretability of the ensemble models, we gained valuable 

insights into the features that play a significant role in the classification of HBP. This knowledge can aid scientists 

in further exploring the mechanisms and properties of these particles. For future work, there are several potential 

directions to consider. First, the proposed methods can be extended to incorporate more ensemble techniques or 

explore different feature selection algorithms to enhance performance and interpretability further. Evaluating the 

approach on more extensive and diverse datasets from various experiments or collider simulations can help 

validate its generalizability and robustness. 
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Table of Abbreviations 

ANN  Artificial neural network 

AUC  Area Under the ROC Curve 

BDCAT  Big Data Computing, Applications and Technologies 

BM  Base Models 

DT  Decision Tree 

GBT  Gradient Boosted Tree 

LHC  Large Hadron Collider 

LR  Logistic Regression 

MCC  Matthews Correlation Coefficient 

ML  Machine Learning 

MPNN  Message-passing neural networks 

RF  Random Forest 

RFS  Recursive Feature Selection 

SVM  Support vector machines 

HBP   Higgs Bosson Particles 

SHAP  SHapley Additive exPlanations   

XAI  eXplanable Artificial Intelligence 
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